




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每題4分,共48分)1.如圖,拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示,下列結論:①;②;③方程的兩個根是,;④當時,的取值范圍是;⑤當時,隨增大而增大其中結論正確的個數是A.1個 B.2個 C.3個 D.4個2.如圖,在平面直角坐標系中,點、在函數的圖象上,過點分別作軸、軸的垂線,垂足為、;過點分別作軸、軸的垂線,垂足為、.交于點,隨著的增大,四邊形的面積()A.增大 B.減小 C.先減小后增大 D.先增大后減小3.拋物線y=ax2+bx+c的對稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:①abc>1;②b2﹣4ac>1;③9a﹣3b+c=1;④若點(﹣1.5,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑤5a﹣2b+c<1.其中正確的個數有()A.2 B.3 C.4 D.54.已知關于x的一元二次方程x2+x+m=0的一個實數根為1,那么它的另一個實數根是()A.-2 B.0 C.1 D.25.如圖,AB,AM,BN分別是⊙O的切線,切點分別為P,M,N.若MN∥AB,∠A=60°,AB=6,則⊙O的半徑是()A. B.3 C. D.6.在單詞mathematics(數學)中任意選擇一個字母,字母為“m”的概率為()A. B. C. D.7.將拋物線向左平移2個單位長度,再向下平移3個單位長度,得到的拋物線的函數表達式為()A.B.C.D.8.某企業2018年初獲利潤300萬元,到2020年初計劃利潤達到507萬元.設這兩年的年利潤平均增長率為x.應列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5079.對于反比例函數y=(k≠0),下列所給的四個結論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數的圖象關于直線y=﹣x成軸對稱10.若兩個相似三角形的周長之比是1:4,那么這兩個三角形的面積之比是()A.1:4 B.1:2 C.1:16 D.1:811.如圖,圓錐的底面半徑OB=6cm,高OC=8cm.則這個圓錐的側面積是()A.30cm2 B.30πcm2 C.60πcm2 D.120cm212.如圖,已知⊙O的半徑是4,點A,B,C在⊙O上,若四邊形OABC為菱形,則圖中陰影部分面積為()A. B. C. D.二、填空題(每題4分,共24分)13.拋物線y=3(x+2)2+5的頂點坐標是_____.14.如圖,已知AB是⊙O的直徑,弦CD與AB相交,若∠BCD=24°,則∠ABD的度數為___度.15.一布袋里裝有4個紅球、5個黃球、6個黑球,這些球除顏色外其余都相同,那么從這個布袋里摸出一個黃球的概率為__________.16.分解因式:=_________.17.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠BAD=60°,則∠ACD=_____°.18.在△ABC中,∠B=45°,cosA=,則∠C的度數是_____.三、解答題(共78分)19.(8分)如圖,已知直線y=-2x+3與拋物線y=x2相交于A,B兩點,O為坐標原點.(1)求點A和B的坐標;(2)連結OA,OB,求△OAB的面積.20.(8分)如圖,在等腰中,,以為直徑作交于點,過點作,垂足為.(1)求證:是的切線.(2)若,,求的長.21.(8分)計算:4sin30°﹣cos45°+tan260°.22.(10分)已知一個圓錐的軸截面△ABC是等邊三角形,它的表面積為75πcm2,求這個圓維的底面的半徑和母線長.23.(10分)解方程:(1)x2﹣4x﹣1=0;(2)5x(x﹣1)=x﹣1.24.(10分)如圖1,BC是⊙O的直徑,點A在⊙O上,AD⊥BC,垂足為D,,BE分別交AD、AC于點F、G.(1)判斷△FAG的形狀,并說明理由;(2)如圖2,若點E和點A在BC的兩側,BE、AC的延長線交于點G,AD的延長線交BE于點F,其余條件不變,(1)中的結論還成立嗎?請說明理由;(3)在(2)的條件下,若BG=26,BD﹣DF=7,求AB的長.25.(12分)如圖,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求證:△DEH∽△BCA.26.矩形OABC在直角坐標系中的位置如圖所示,A、C兩點的坐標分別為A(6,0)、C(0,3),直線y=x與BC邊相交于D.(1)求點D的坐標:(2)若拋物線y=ax+bx經過D、A兩點,試確定此拋物線的表達式:(3)P為x軸上方(2)題中的拋物線上一點,求△POA面積的最大值.
參考答案一、選擇題(每題4分,共48分)1、C【分析】利用拋物線與軸的交點個數可對①進行判斷;由對稱軸方程得到,然后根據時函數值為0可得到,則可對②進行判斷;利用拋物線的對稱性得到拋物線與軸的一個交點坐標為,則可對③進行判斷;根據拋物線在軸上方所對應的自變量的范圍可對④進行判斷;根據二次函數的性質對⑤進行判斷.【詳解】解:拋物線與軸有2個交點,,所以①正確;,即,而時,,即,,所以②錯誤;拋物線的對稱軸為直線,而點關于直線的對稱點的坐標為,方程的兩個根是,,所以③正確;根據對稱性,由圖象知,當時,,所以④錯誤;拋物線的對稱軸為直線,當時,隨增大而增大,所以⑤正確.故選:.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數,二次項系數決定拋物線的開口方向和大小:當時,拋物線向上開口;當時,拋物線向下開口;一次項系數和二次項系數共同決定對稱軸的位置:當與同號時(即,對稱軸在軸左;當與異號時(即,對稱軸在軸右;常數項決定拋物線與軸交點位置:拋物線與軸交于;拋物線與軸交點個數由△決定:△時,拋物線與軸有2個交點;△時,拋物線與軸有1個交點;△時,拋物線與軸沒有交點.2、A【分析】首先利用a和b表示出AC和CQ的長,則四邊形ACQE的面積即可利用a、b表示,然后根據函數的性質判斷.【詳解】解:AC=a?2,CQ=b,則S四邊形ACQE=AC?CQ=(a?2)b=ab?2b.∵、在函數的圖象上,∴ab=k=10(常數).∴S四邊形ACQE=AC?CQ=10?2b,∵當a>2時,b隨a的增大而減小,∴S四邊形ACQE=10?2b隨a的增大而增大.故選:A.【點睛】本題考查了反比例函數的性質以及矩形的面積的計算,利用b表示出四邊形ACQE的面積是關鍵.3、B【分析】分析:根據二次函數的性質一一判斷即可.【詳解】詳解:∵拋物線對稱軸x=-1,經過(1,1),∴-=-1,a+b+c=1,∴b=2a,c=-3a,∵a>1,∴b>1,c<1,∴abc<1,故①錯誤,∵拋物線對稱軸x=-1,經過(1,1),可知拋物線與x軸還有另外一個交點(-3,1)∴拋物線與x軸有兩個交點,∴b2-4ac>1,故②正確,∵拋物線與x軸交于(-3,1),∴9a-3b+c=1,故③正確,∵點(-1.5,y1),(-2,y2)均在拋物線上,(-1.5,y1)關于對稱軸的對稱點為(-1.5,y1)(-1.5,y1),(-2,y2)均在拋物線上,且在對稱軸左側,-1.5>-2,則y1<y2;故④錯誤,∵5a-2b+c=5a-4a-3a=-2a<1,故⑤正確,故選B.【點睛】本題考查二次函數與系數的關系,二次函數圖象上上的點的特征,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.4、A【解析】設方程的另一個實數根為x,則根據一元二次方程根與系數的關系,得x+1=-1,解得x=-1.故選A.5、D【分析】根據題意可判斷四邊形ABNM為梯形,再由切線的性質可推出∠ABN=60°,從而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函數可解出半徑的值.【詳解】解:連接OP,OM,OA,OB,ON∵AB,AM,BN分別和⊙O相切,∴∠AMO=90°,∠APO=90°,∵MN∥AB,∠A=60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,,△APO≌△BPO(AAS),∴AP=AB=3,∴tan∠OAP=tan30°==,∴OP=,即半徑為.故選D.【點睛】本題考查了切線的性質,切線長定理,解直角三角形,全等三角形的判定和性質,關鍵是說明點P是AB中點,難度不大.6、B【分析】根據概率公式進行計算即可.【詳解】在單詞“mathematics”中,共11個字母,其中有2個字母“m”,故從中任意選擇一個字母,這個字母為“m”的概率是.故選:B.【點睛】本題考查概率的計算,熟記概率公式是解題關鍵.7、A【分析】先確定拋物線y=x2的頂點坐標為(0,0),再根據點平移的規律得到點(0,0)平移后所得對應點的坐標為(-2,-1),然后根據頂點式寫出平移后的拋物線解析式.【詳解】拋物線y=x2的頂點坐標為(0,0),把點(0,0)向左平移1個單位,再向下平移2個單位長度所得對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.
故選A.8、B【分析】根據年利潤平均增長率,列出變化增長前后的關系方程式進行求解.【詳解】設這兩年的年利潤平均增長率為x,列方程為:300(1+x)2=507.故選B.【點睛】本題考查了由實際問題抽象出一元二次方程,解題的關鍵是怎么利用年利潤平均增長率列式計算.9、D【解析】分析:根據反比例函數的性質一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減小;故本選項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數的性質,解題的關鍵是熟練掌握反比例函數的性質,靈活運用所學知識解決問題,屬于中考常考題型.10、C【分析】根據相似三角形的面積的比等于相似比的平方可得答案.【詳解】解:∵相似三角形的周長之比是1:4,∴對應邊之比為1:4,∴這兩個三角形的面積之比是:1:16,故選C.【點睛】此題主要考查了相似三角形的性質,關鍵是掌握相似三角形的周長的比等于相似比;相似三角形的面積的比等于相似比的平方.11、C【詳解】解:由勾股定理計算出圓錐的母線長=,圓錐漏斗的側面積=.故選C.考點:圓錐的計算12、B【分析】連接OB和AC交于點D,根據菱形及直角三角形的性質先求出AC的長及∠AOC的度數,然后求出菱形ABCO及扇形AOC的面積,則由S扇形AOC-S菱形ABCO可得答案.【詳解】連接OB和AC交于點D,如圖所示:
∵圓的半徑為4,
∴OB=OA=OC=4,
又四邊形OABC是菱形,
∴OB⊥AC,OD=OB=2,
在Rt△COD中利用勾股定理可知:CD=,∵sin∠COD=∴∠COD=60°,∠AOC=2∠COD=120°,
∴S菱形ABCO=,∴S扇形=,則圖中陰影部分面積為S扇形AOC-S菱形ABCO=.故選B.【點睛】考查扇形面積的計算及菱形的性質,解題關鍵是熟練掌握菱形的面積=a?b(a、b是兩條對角線的長度);扇形的面積=.二、填空題(每題4分,共24分)13、(﹣2,5)【分析】已知拋物線的頂點式,可直接寫出頂點坐標.【詳解】解:由y=3(x+2)2+5,根據頂點式的坐標特點可知,頂點坐標為(﹣2,5).故答案為:(﹣2,5).【點睛】本題考查二次函數的性質,熟知二次函數的頂點式是解題的關鍵,即在y=a(x-h)2+k中,頂點坐標為(h,k),對稱軸為x=h.14、66【解析】連接AD,根據圓周角定理可求∠ADB=90°,由同弧所對圓周角相等可得∠DCB=∠DAB,即可求∠ABD的度數.【詳解】解:連接AD,∵AB是直徑,∴∠ADB=90°,∵∠BCD=24°,∴∠BAD=∠BCD=24°,∴∠ABD=66°,故答案為:66【點睛】本題考查了圓周角定理,根據圓周角定理可求∠ADB=90°是本題的關鍵.15、【分析】由于每個球被摸到的機會是均等的,故可用概率公式解答.【詳解】解:∵布袋里裝有4個紅球、5個黃球、6個黑球,∴P(摸到黃球)=;故答案為:.【點睛】此題考查了概率公式,要明確:如果在全部可能出現的基本事件范圍內構成事件A的基本事件有a個,不構成事件A的事件有b個,則出現事件A的概率為:P(A)=.16、【解析】提取公因式法和公式法因式分解.【分析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續分解因式.因此,.17、1【解析】連接BD.根據圓周角定理可得.【詳解】解:如圖,連接BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案為1.【點睛】考核知識點:圓周角定理.理解定義是關鍵.18、75°【解析】已知在△ABC中°,cosA=,可得∠A=60°,又因∠B=45,根據三角形的內角和定理可得∠C=75°.三、解答題(共78分)19、(1)A(1,1),B(-3,9);(2)6.【分析】(1)將直線與拋物線聯立解方程組,即可求出交點坐標;(2)過點A與點B分別作AA1、BB1垂直于x軸,由圖形可得△OAB的面積可用梯形AA1B1B的面積減去△OBB1的面積,再減去△OAA1得到.【詳解】(1)∵直線y=-2x+3與拋物線y=x2相交,∴將直線與拋物線聯立得,解得或,∴A(1,1),B(-3,9);(2)過點A與點B分別作AA1、BB1垂直于x軸,如下圖所示,由A、B的坐標可知AA1=1,BB1=9,OB1=3,OA1=1,A1B1=4,梯形AA1B1B的面積=,△OBB1的面積=,△OAA1的面積=,∴△OAB的面積=.故答案為6.【點睛】本題考查了求一次函數與二次函數的交點和坐標系中三角形的面積計算,求函數圖像交點,就是將兩個函數聯立解方程組,坐標系中不規則圖形的面積通常采用割補法計算.20、(1)見解析;(2)【解析】(1)連結,根據等腰三角形性質和等量代換得,由垂直定義和三角形內角和定理得,等量代換得,由平角定義得,從而可得證.(2)連結,由圓周角定理得,根據等腰三角形性質和三角形外角性質可得,在中,由直角三角形性質得,在中,由直角三角形性質得,再由弧長公式計算即可求得答案.【詳解】(1)證明:如圖,連結.∵,,∴,,∴,∴,∴,∴,∴,∴為的切線.(2)解:連結,∵為的直徑.∴.∵,∴,,∴.∵,∴,∴,∴【點睛】本題考查切線的判定.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.21、4.【分析】原式利用特殊角的三角函數值計算即可求出值.【詳解】原式.【點睛】此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.22、這個圓錐的底面半徑為5cm,母線長為1cm.【分析】根據圓錐的母線即為其側面展開圖的扇形半徑,圓錐底面圓的周長等于扇形弧長,可設底面半徑為r,則易得圓錐的母線長即為扇形半徑為2r,利用圓錐表面積公式求解即可.【詳解】解:設這個圓錐的底面半徑為rcm,∵圓錐的軸截面△ABC是等邊三角形,∴圓錐母線的長為2rcm,∵圓錐的母線即為扇形半徑,圓錐底面圓的周長等于扇形弧長,扇形面積+底面圓的面積=圓錐表面積.∴×2πr×2r+πr2=75π,解得:r=5,∴2r=1.故這個圓錐的底面半徑為5cm,母線長為1cm.【點睛】此題主要考查了圓錐的相關知識,明確圓錐的母線即為其側面展開圖的扇形半徑,圓錐底面圓的周長等于扇形弧長是解題關鍵.23、(1)x1=2+,x2=2﹣;(2)x1=1,x2=0.2【分析】(1)利用配方法求解,可得答案;(2)利用因式分解法求解,可得答案.【詳解】(1)∵x2﹣4x=1,∴x2﹣4x+4=1+4,即(x﹣2)2=7,則x﹣2=±,解得:x1=2+,x2=2﹣;(2)∵5x(x﹣1)﹣(x﹣1)=0,∴(x﹣1)(5x﹣1)=0,則x﹣1=0或5x﹣1=0,解得:x1=1,x2=0.2.【點睛】本題主要考查一元二次方程的解法,掌握配方法和因式分解法解方程,是解題的關鍵.24、(1)等腰三角形,理由見解析;(2)成立,理由見解析;(3).【分析】(1)首先根據圓周角定理及垂直的定義得到,,從而得到,然后利用等弧對等角、等角對等邊等知識得到,從而證得,判定等腰三角形;(2)成立,證明方法同(1);(3)首先根據上題得到,從而利用已知條件得到,然后利用勾股定理得到,,從而求得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目管理考試趨勢與挑戰試題及答案
- 2025年關鍵點的證券從業資格試題及答案
- 檔案保護技術的新發展試題及答案
- 沼氣管線泄漏施工方案
- 財務報表理解的證券從業資格證試題及答案
- 2024年福建事業單位考試榜樣學習試題及答案
- 實木地板龍骨施工方案
- 提高農業職業經理人考試的競爭素質的方法試題及答案
- 項目實施中的法律合規要求試題及答案
- 福建事業單位考試社會學知識題及答案
- 2025年普法知識競賽題庫及答案(共80題)
- 2025年國家糧食和物資儲備局垂直管理系事業單位招聘筆試參考題庫附帶答案詳解
- DB32-T 4281-2022 江蘇省建筑工程施工現場專業人員配備標準
- 自卸車整車裝配檢驗規范-ok
- 電子產品設計生產工藝流程
- 初級培訓機器人的機械系統
- 制造工廠品質宣傳海報標語
- 吸入裝置正確使用方法調查表
- 《異位骨化》PPT課件.ppt
- AS9100D2016產品設計和開發控制程序
- FX挑戰題梯形圖實例
評論
0/150
提交評論