




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
/生物化學重點緒論一、生物化學的的概念:生物化學(biochemistry)是利用化學的原理與方法去探討生命的一門科學,它是介于化學、生物學與物理學之間的一門邊緣學科。二、生物化學的發展:1.敘述生物化學階段:是生物化學發展的萌芽階段,其主要的工作是分析和研究生物體的組成成分以與生物體的分泌物和排泄物。2.動態生物化學階段:是生物化學蓬勃發展的時期。就在這一時期,人們基本上弄清了生物體內各種主要化學物質的代謝途徑。3.分子生物學階段:這一階段的主要研究工作就是探討各種生物大分子的結構與其功能之間的關系。三、生物化學研究的主要方面:1.生物體的物質組成:高等生物體主要由蛋白質、核酸、糖類、脂類以與水、無機鹽等組成,此外還含有一些低分子物質。2.物質代謝:物質代謝的基本過程主要包括三大步驟:消化、吸收→中間代謝→排泄。其中,中間代謝過程是在細胞內進行的,最為復雜的化學變化過程,它包括合成代謝,分解代謝,物質互變,代謝調控,能量代謝幾方面的內容。3.細胞信號轉導:細胞內存在多條信號轉導途徑,而這些途徑之間通過一定的方式方式相互交織在一起,從而構成了非常復雜的信號轉導網絡,調控細胞的代謝、生理活動與生長分化。4.生物分子的結構與功能:通過對生物大分子結構的理解,揭示結構與功能之間的關系。5.遺傳與繁殖:對生物體遺傳與繁殖的分子機制的研究,也是現代生物化學與分子生物學研究的一個重要內容。第一章蛋白質的結構與功能一、氨基酸:1.結構特點:氨基酸(aminoacid)是蛋白質分子的基本組成單位。構成天然蛋白質分子的氨基酸約有20種,除脯氨酸為α-亞氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均為L-α-氨基酸。2.分類:根據氨基酸的R基團的極性大小可將氨基酸分為四類:①非極性中性氨基酸(8種);②極性中性氨基酸(7種);③酸性氨基酸(Glu和Asp);④堿性氨基酸(Lys、Arg和His)。二、肽鍵與肽鏈:肽鍵(peptidebond)是指由一分子氨基酸的α-羧基與另一分子氨基酸的α-氨基經脫水而形成的共價鍵(-CO-NH-)。氨基酸分子在參與形成肽鍵之后,由于脫水而結構不完整,稱為氨基酸殘基。每條多肽鏈都有兩端:即自由氨基端(N端)與自由羧基端(C端),肽鏈的方向是N端→C端。三、肽鍵平面(肽單位):肽鍵具有部分雙鍵的性質,不能自由旋轉;組成肽鍵的四個原子與其相鄰的兩個α碳原子處在同一個平面上,為剛性平面結構,稱為肽鍵平面。四、蛋白質的分子結構:蛋白質的分子結構可人為分為一級、二級、三級和四級結構等層次。一級結構為線狀結構,二、三、四級結構為空間結構。1.一級結構:指多肽鏈中氨基酸的排列順序,其維系鍵是肽鍵。蛋白質的一級結構決定其空間結構。2.二級結構:指多肽鏈主鏈骨架盤繞折疊而形成的構象,借氫鍵維系。主要有以下幾種類型:⑴α-螺旋:其結構特征為:①主鏈骨架圍繞中心軸盤繞形成右手螺旋;②螺旋每上升一圈是3.6個氨基酸殘基,螺距為0.54nm;③相鄰螺旋圈之間形成許多氫鍵;④側鏈基團位于螺旋的外側。影響α-螺旋形成的因素主要是:①存在側鏈基團較大的氨基酸殘基;②連續存在帶相同電荷的氨基酸殘基;③存在脯氨酸殘基。⑵β-折疊:其結構特征為:①若干條肽鏈或肽段平行或反平行排列成片;②所有肽鍵的C=O和N—H形成鏈間氫鍵;③側鏈基團分別交替位于片層的上、下方。⑶β-轉角:多肽鏈180°回折部分,通常由四個氨基酸殘基構成,借1、4殘基之間形成氫鍵維系。⑷無規卷曲:主鏈骨架無規律盤繞的部分。3.三級結構:指多肽鏈所有原子的空間排布。其維系鍵主要是非共價鍵(次級鍵):氫鍵、疏水鍵、范德華力、離子鍵等,也可涉與二硫鍵。4.四級結構:指亞基之間的立體排布、接觸部位的布局等,其維系鍵為非共價鍵。亞基是指參與構成蛋白質四級結構的而又具有獨立三級結構的多肽鏈。五、蛋白質的理化性質:1.兩性解離與等電點:蛋白質分子中仍然存在游離的氨基和游離的羧基,因此蛋白質與氨基酸一樣具有兩性解離的性質。蛋白質分子所帶正、負電荷相等時溶液的pH值稱為蛋白質的等電點。2.蛋白質的膠體性質:蛋白質具有親水溶膠的性質。蛋白質分子表面的水化膜和表面電荷是穩定蛋白質親水溶膠的兩個重要因素。3.蛋白質的紫外吸收:蛋白質分子中的色氨酸、酪氨酸和苯丙氨酸殘基對紫外光有吸收,以色氨酸吸收最強,最大吸收峰為280nm。4.蛋白質的變性:蛋白質在某些理化因素的作用下,其特定的空間結構被破壞而導致其理化性質改變與生物活性喪失,這種現象稱為蛋白質的變性。引起蛋白質變性的因素有:高溫、高壓、電離輻射、超聲波、紫外線與有機溶劑、重金屬鹽、強酸強堿等。絕大多數蛋白質分子的變性是不可逆的。六、蛋白質的分離與純化:1.鹽析與有機溶劑沉淀:在蛋白質溶液中加入大量中性鹽,以破壞蛋白質的膠體性質,使蛋白質從溶液中沉淀析出,稱為鹽析。常用的中性鹽有:硫酸銨、氯化鈉、硫酸鈉等。鹽析時,溶液的pH在蛋白質的等電點處效果最好。凡能與水以任意比例混合的有機溶劑,如乙醇、甲醇、丙酮等,均可引起蛋白質沉淀。2.電泳:蛋白質分子在高于或低于其pI的溶液中帶凈的負或正電荷,因此在電場中可以移動。電泳遷移率的大小主要取決于蛋白質分子所帶電荷量以與分子大小。3.透析:利用透析袋膜的超濾性質,可將大分子物質與小分子物質分離開。4.層析:利用混合物中各組分理化性質的差異,在相互接觸的兩相(固定相與流動相)之間的分布不同而進行分離。主要有離子交換層析,凝膠層析,吸附層析與親和層析等,其中凝膠層析可用于測定蛋白質的分子量。5.超速離心:利用物質密度的不同,經超速離心后,分布于不同的液層而分離。超速離心也可用來測定蛋白質的分子量,蛋白質的分子量與其沉降系數S成正比。七、氨基酸順序分析:蛋白質多肽鏈的氨基酸順序分析,即蛋白質一級結構的測定,主要有以下幾個步驟:1.分離純化蛋白質,得到一定量的蛋白質純品;2.取一定量的樣品進行完全水解,再測定蛋白質的氨基酸組成;3.分析蛋白質的N-端和C-端氨基酸;4.采用特異性的酶(如胰凝乳蛋白酶)或化學試劑(如溴化氰)將蛋白質處理為若干條肽段;5.分離純化單一肽段;測定各條肽段的氨基酸順序。一般采用Edman降解法,用異硫氰酸苯酯進行反應,將氨基酸降解后,逐一進行測定;7.至少用兩種不同的方法處理蛋白質,分別得到其肽段的氨基酸順序;8.將兩套不同肽段的氨基酸順序進行比較,以獲得完整的蛋白質分子的氨基酸順序。第三章核酸的結構與功能一、核酸的化學組成:1.含氮堿:參與核酸和核苷酸構成的含氮堿主要分為嘌呤堿和嘧啶堿兩大類。組成核苷酸的嘧啶堿主要有三種——尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它們都是嘧啶的衍生物。組成核苷酸的嘌呤堿主要有兩種——腺嘌呤(A)和鳥嘌呤(G),它們都是嘌呤的衍生物。2.戊糖:核苷酸中的戊糖主要有兩種,即β-D-核糖與β-D-2-脫氧核糖,由此構成的核苷酸也分為核糖核苷酸與脫氧核糖核酸兩大類。3.核苷:核苷是由戊糖與含氮堿基經脫水縮合而生成的化合物。通常是由核糖或脫氧核糖的C1’β-羥基與嘧啶堿N1或嘌呤堿N9進行縮合,故生成的化學鍵稱為β,N糖苷鍵。其中由D-核糖生成者稱為核糖核苷,而由脫氧核糖生成者則稱為脫氧核糖核苷。由“稀有堿基”所生成的核苷稱為“稀有核苷”。假尿苷(ψ)就是由D-核糖的C1’與尿嘧啶的C5相連而生成的核苷。二、核苷酸的結構與命名:核苷酸是由核苷與磷酸經脫水縮合后生成的磷酸酯類化合物,包括核糖核苷酸和脫氧核糖核酸兩大類。最常見的核苷酸為5’-核苷酸(5’常被省略)。5’-核苷酸又可按其在5’位縮合的磷酸基的多少,分為一磷酸核苷(核苷酸)、二磷酸核苷和三磷酸核苷。此外,生物體內還存在一些特殊的環核苷酸,常見的為環一磷酸腺苷(cAMP)和環一磷酸鳥苷(cGMP),它們通常是作為激素作用的第二信使。核苷酸通常使用縮寫符號進行命名。第一位符號用小寫字母d代表脫氧,第二位用大寫字母代表堿基,第三位用大寫字母代表磷酸基的數目,第四位用大寫字母P代表磷酸。三、核酸的一級結構:核苷酸通過3’,5’-磷酸二酯鍵連接起來形成的不含側鏈的多核苷酸長鏈化合物就稱為核酸。核酸具有方向性,5’-位上具有自由磷酸基的末端稱為5’-端,3’-位上具有自由羥基的末端稱為3’-端。DNA由dAMP、dGMP、dCMP和dTMP四種脫氧核糖核苷酸所組成。DNA的一級結構就是指DNA分子中脫氧核糖核苷酸的種類、數目、排列順序與連接方式。RNA由AMP,GMP,CMP,UMP四種核糖核苷酸組成。RNA的一級結構就是指RNA分子中核糖核苷酸的種類、數目、排列順序與連接方式。四、DNA的二級結構:DNA雙螺旋結構是DNA二級結構的一種重要形式,它是Watson和Crick兩位科學家于1953年提出來的一種結構模型,其主要實驗依據是Chargaff研究小組對DNA的化學組成進行的分析研究,即DNA分子中四種堿基的摩爾百分比為A=T、G=C、A+G=T+C(Chargaff原則),以與由Wilkins研究小組完成的DNA晶體X線衍射圖譜分析。天然DNA的二級結構以B型為主,其結構特征為:①為右手雙螺旋,兩條鏈以反平行方式排列;②主鏈位于螺旋外側,堿基位于內側;③兩條鏈間存在堿基互補,通過氫鍵連系,且A-T、G-C(堿基互補原則);④螺旋的穩定因素為氫鍵和堿基堆砌力;⑤螺旋的螺距為3.4nm,直徑為2nm。五、DNA的超螺旋結構:雙螺旋的DNA分子進一步盤旋形成的超螺旋結構稱為DNA的三級結構。絕大多數原核生物的DNA都是共價封閉的環狀雙螺旋,其三級結構呈麻花狀。在真核生物中,雙螺旋的DNA分子圍繞一蛋白質八聚體進行盤繞,從而形成特殊的串珠狀結構,稱為核小體。核小體結構屬于DNA的三級結構。六、DNA的功能:DNA的基本功能是作為遺傳信息的載體,為生物遺傳信息復制以與基因信息的轉錄提供模板。DNA分子中具有特定生物學功能的片段稱為基因(gene)。一個生物體的全部DNA序列稱為基因組(genome)。基因組的大小與生物的復雜性有關。七、RNA的空間結構與功能:RNA分子的種類較多,分子大小變化較大,功能多樣化。RNA通常以單鏈存在,但也可形成局部的雙螺旋結構。1.mRNA的結構與功能:mRNA是單鏈核酸,其在真核生物中的初級產物稱為HnRNA。大多數真核成熟的mRNA分子具有典型的5’-端的7-甲基鳥苷三磷酸(m7GTP)帽子結構和3’-端的多聚腺苷酸(polyA)尾巴結構。mRNA的功能是為蛋白質的合成提供模板,分子中帶有遺傳密碼。mRNA分子中每三個相鄰的核苷酸組成一組,在蛋白質翻譯合成時代表一個特定的氨基酸,這種核苷酸三聯體稱為遺傳密碼(coden)。2.tRNA的結構與功能:tRNA是分子最小,但含有稀有堿基最多的RNA。tRNA的二級結構由于局部雙螺旋的形成而表現為“三葉草”形,故稱為“三葉草”結構,可分為五個部分:①氨基酸臂:由tRNA的5’-端和3’-端構成的局部雙螺旋,3’-端都帶有-CCA-OH順序,可與氨基酸結合而攜帶氨基酸。②DHU臂:含有二氫尿嘧啶核苷,與氨基酰tRNA合成酶的結合有關。③反密碼臂:其反密碼環中部的三個核苷酸組成三聯體,在蛋白質生物合成中,可以用來識別mRNA上相應的密碼,故稱為反密碼(anticoden)。④TψC臂:含保守的TψC順序,可以識別核蛋白體上的rRNA,促使tRNA與核蛋白體結合。⑤可變臂:位于TψC臂和反密碼臂之間,功能不詳。3.rRNA的結構與功能:rRNA是細胞中含量最多的RNA,可與蛋白質一起構成核蛋白體,作為蛋白質生物合成的場所。原核生物中的rRNA有三種:5S,16S,23S。真核生物中的rRNA有四種:5S,5.8S,18S,28S。八、核酶:具有自身催化作用的RNA稱為核酶(ribozyme),核酶通常具有特殊的分子結構,如錘頭結構。九、核酸的一般理化性質:核酸具有酸性;粘度大;能吸收紫外光,最大吸收峰為260nm。十、DNA的變性:在理化因素作用下,DNA雙螺旋的兩條互補鏈松散而分開成為單鏈,從而導致DNA的理化性質與生物學性質發生改變,這種現象稱為DNA的變性。引起DNA變性的因素主要有:①高溫,②強酸強堿,③有機溶劑等。DNA變性后的性質改變:①增色效應:指DNA變性后對260nm紫外光的光吸收度增加的現象;②旋光性下降;③粘度降低;④生物功能喪失或改變。加熱DNA溶液,使其對260nm紫外光的吸收度突然增加,達到其最大值一半時的溫度,就是DNA的變性溫度(融解溫度,Tm)。Tm的高低與DNA分子中G+C的含量有關,G+C的含量越高,則Tm越高。十一、DNA的復性與分子雜交:將變性DNA經退火處理,使其重新形成雙螺旋結構的過程,稱為DNA的復性。兩條來源不同的單鏈核酸(DNA或RNA),只要它們有大致相同的互補堿基順序,以退火處理即可復性,形成新的雜種雙螺旋,這一現象稱為核酸的分子雜交。核酸雜交可以是DNA-DNA,也可以是DNA-RNA雜交。不同來源的,具有大致相同互補堿基順序的核酸片段稱為同源順序。常用的核酸分子雜交技術有:原位雜交、斑點雜交、Southern雜交與Northern雜交等。在核酸雜交分析過程中,常將已知順序的核酸片段用放射性同位素或生物素進行標記,這種帶有一定標記的已知順序的核酸片段稱為探針。十二、核酸酶:凡是能水解核酸的酶都稱為核酸酶。凡能從多核苷酸鏈的末端開始水解核酸的酶稱為核酸外切酶,凡能從多核苷酸鏈中間開始水解核酸的酶稱為核酸內切酶。能識別特定的核苷酸順序,并從特定位點水解核酸的內切酶稱為限制性核酸內切酶(限制酶)第三章酶一、酶的概念:酶(enzyme)是由活細胞產生的生物催化劑,這種催化劑具有極高的催化效率和高度的底物特異性,其化學本質是蛋白質。酶按照其分子結構可分為單體酶、寡聚酶和多酶體系(多酶復合體和多功能酶)三大類。二、酶的分子組成:酶分子可根據其化學組成的不同,可分為單純酶和結合酶(全酶)兩類。結合酶則是由酶蛋白和輔助因子兩部分構成,酶蛋白部分主要與酶的底物特異性有關,輔助因子則與酶的催化活性有關。與酶蛋白疏松結合并與酶的催化活性有關的耐熱低分子有機化合物稱為輔酶。與酶蛋白牢固結合并與酶的催化活性有關的耐熱低分子有機化合物稱為輔基。三、輔酶與輔基的來源與其生理功用:輔酶與輔基的生理功用主要是:⑴運載氫原子或電子,參與氧化還原反應。⑵運載反應基團,如酰基、氨基、烷基、羧基與一碳單位等,參與基團轉移。大部分的輔酶與輔基衍生于維生素。維生素(vitamin)是指一類維持細胞正常功能所必需的,但在許多生物體內不能自身合成而必須由食物供給的小分子有機化合物。維生素可按其溶解性的不同分為脂溶性維生素和水溶性維生素兩大類。脂溶性維生素有VitA、VitD、VitE和VitK四種;水溶性維生素有VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素,葉酸等。1.TPP:即焦磷酸硫胺素,由硫胺素(VitB1)焦磷酸化而生成,是脫羧酶的輔酶,在體內參與糖代謝過程中α-酮酸的氧化脫羧反應。2.FMN和FAD:即黃素單核苷酸(FMN)和黃素腺嘌呤二核苷酸(FAD),是核黃素(VitB2)的衍生物。FMN或FAD通常作為脫氫酶的輔基,在酶促反應中作為遞氫體(雙遞氫體)。3.NAD+和NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,輔酶Ⅰ)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,輔酶Ⅱ),是VitPP的衍生物。NAD+和NADP+主要作為脫氫酶的輔酶,在酶促反應中起遞氫體的作用,為單遞氫體。4.磷酸吡哆醛和磷酸吡哆胺:是VitB6的衍生物。磷酸吡哆醛和磷酸吡哆胺可作為氨基轉移酶,氨基酸脫羧酶,半胱氨酸脫硫酶等的輔酶。5.CoA:泛酸(遍多酸)在體內參與構成輔酶A(CoA)。CoA中的巰基可與羧基以高能硫酯鍵結合,在糖、脂、蛋白質代謝中起傳遞酰基的作用,是酰化酶的輔酶。6.生物素:是羧化酶的輔基,在體內參與CO2的固定和羧化反應。7.FH4:由葉酸衍生而來。四氫葉酸是體內一碳單位基團轉移酶系統中的輔酶。8.VitB12衍生物:VitB12分子中含金屬元素鈷,故又稱為鈷胺素。VitB12在體內有多種活性形式,如5'-脫氧腺苷鈷胺素、甲基鈷胺素等。其中,5'-脫氧腺苷鈷胺素參與構成變位酶的輔酶,甲基鈷胺素則是甲基轉移酶的輔酶。四、金屬離子的作用:1.穩定構象:穩定酶蛋白催化活性所必需的分子構象;2.構成酶的活性中心:作為酶的活性中心的組成成分,參與構成酶的活性中心;3.連接作用:作為橋梁,將底物分子與酶蛋白螯合起來。五、酶的活性中心:酶分子上具有一定空間構象的部位,該部位化學基團集中,直接參與將底物轉變為產物的反應過程,這一部位就稱為酶的活性中心。參與構成酶的活性中心的化學基團,有些是與底物相結合的,稱為結合基團,有些是催化底物反應轉變成產物的,稱為催化基團,這兩類基團統稱為活性中心內必需基團。在酶的活性中心以外,也存在一些化學基團,主要與維系酶的空間構象有關,稱為酶活性中心外必需基團。六、酶促反應的特點:1.具有極高的催化效率:酶的催化效率可比一般催化劑高106~1020倍。酶能與底物形成ES中間復合物,從而改變化學反應的進程,使反應所需活化能閾大大降低,活化分子的數目大大增加,從而加速反應進行。2.具有高度的底物特異性:一種酶只作用于一種或一類化合物,以促進一定的化學變化,生成一定的產物,這種現象稱為酶作用的特異性。⑴絕對特異性:一種酶只能作用于一種化合物,以催化一種化學反應,稱為絕對特異性,如琥珀酸脫氫酶。⑵相對特異性:一種酶只能作用于一類化合物或一種化學鍵,催化一類化學反應,稱為相對特異性,如脂肪酶。⑶立體異構特異性:一種酶只能作用于一種立體異構體,或只能生成一種立體異構體,稱為立體異構特異性,如L-精氨酸酶。3.酶的催化活性是可以調節的:如代謝物可調節酶的催化活性,對酶分子的共價修飾可改變酶的催化活性,也可通過改變酶蛋白的合成來改變其催化活性。七、酶促反應的機制:1.中間復合物學說與誘導契合學說:酶催化時,酶活性中心首先與底物結合生成一種酶-底物復合物(ES),此復合物再分解釋放出酶,并生成產物,即為中間復合物學說。當底物與酶接近時,底物分子可以誘導酶活性中心的構象以生改變,使之成為能與底物分子密切結合的構象,這就是誘導契合學說。2.與酶的高效率催化有關的因素:①趨近效應與定向作用;②張力作用;③酸堿催化作用;④共價催化作用;⑤酶活性中心的低介電區(表面效應)。八、酶促反應動力學:酶反應動力學主要研究酶催化的反應速度以與影響反應速度的各種因素。在探討各種因素對酶促反應速度的影響時,通常測定其初始速度來代表酶促反應速度,即底物轉化量<5%時的反應速度。1.底物濃度對反應速度的影響:⑴底物對酶促反應的飽和現象:由實驗觀察到,在酶濃度不變時,不同的底物濃度與反應速度的關系為一矩形雙曲線,即當底物濃度較低時,反應速度的增加與底物濃度的增加成正比(一級反應);此后,隨底物濃度的增加,反應速度的增加量逐漸減少(混合級反應);最后,當底物濃度增加到一定量時,反應速度達到一最大值,不再隨底物濃度的增加而增加(零級反應)。⑵米氏方程與米氏常數:根據上述實驗結果,Michaelis&Menten于1913年推導出了上述矩形雙曲線的數學表達式,即米氏方程:ν=Vmax[S]/(Km+[S])。其中,Vmax為最大反應速度,Km為米氏常數。⑶Km和Vmax的意義:①當ν=Vmax/2時,Km=[S]。因此,Km等于酶促反應速度達最大值一半時的底物濃度。②當k-1>>k+2時,Km=k-1/k+1=Ks。因此,Km可以反映酶與底物親和力的大小,即Km值越小,則酶與底物的親和力越大;反之,則越小。③Km可用于判斷反應級數:當[S]<0.01Km時,ν=(Vmax/Km)[S],反應為一級反應,即反應速度與底物濃度成正比;當[S]>100Km時,ν=Vmax,反應為零級反應,即反應速度與底物濃度無關;當0.01Km<[S]<100Km時,反應處于零級反應和一級反應之間,為混合級反應。④Km是酶的特征性常數:在一定條件下,某種酶的Km值是恒定的,因而可以通過測定不同酶(特別是一組同工酶)的Km值,來判斷是否為不同的酶。⑤Km可用來判斷酶的最適底物:當酶有幾種不同的底物存在時,Km值最小者,為該酶的最適底物。⑥Km可用來確定酶活性測定時所需的底物濃度:當[S]=10Km時,ν=91%Vmax,為最合適的測定酶活性所需的底物濃度。⑦Vmax可用于酶的轉換數的計算:當酶的總濃度和最大速度已知時,可計算出酶的轉換數,即單位時間內每個酶分子催化底物轉變為產物的分子數。⑷Km和Vmax的測定:主要采用Lineweaver-Burk雙倒數作圖法和Hanes作圖法。2.酶濃度對反應速度的影響:當反應系統中底物的濃度足夠大時,酶促反應速度與酶濃度成正比,即ν=k[E]。3.溫度對反應速度的影響:一般來說,酶促反應速度隨溫度的增高而加快,但當溫度增加達到某一點后,由于酶蛋白的熱變性作用,反應速度迅速下降。酶促反應速度隨溫度升高而達到一最大值時的溫度就稱為酶的最適溫度。酶的最適溫度與實驗條件有關,因而它不是酶的特征性常數。低溫時由于活化分子數目減少,反應速度降低,但溫度升高后,酶活性又可恢復。4.pH對反應速度的影響:觀察pH對酶促反應速度的影響,通常為一鐘形曲線,即pH過高或過低均可導致酶催化活性的下降。酶催化活性最高時溶液的pH值就稱為酶的最適pH。人體內大多數酶的最適pH在6.5~8.0之間。酶的最適pH不是酶的特征性常數。5.抑制劑對反應速度的影響:凡是能降低酶促反應速度,但不引起酶分子變性失活的物質統稱為酶的抑制劑。按照抑制劑的抑制作用,可將其分為不可逆抑制作用和可逆抑制作用兩大類。⑴不可逆抑制作用:抑制劑與酶分子的必需基團共價結合引起酶活性的抑制,且不能采用透析等簡單方法使酶活性恢復的抑制作用就是不可逆抑制作用。如果以ν~[E]作圖,就可得到一組斜率相同的平行線,隨抑制劑濃度的增加而平行向右移動。酶的不可逆抑制作用包括專一性抑制(如有機磷農藥對膽堿酯酶的抑制)和非專一性抑制(如路易斯氣對巰基酶的抑制)兩種。⑵可逆抑制作用:抑制劑以非共價鍵與酶分子可逆性結合造成酶活性的抑制,且可采用透析等簡單方法去除抑制劑而使酶活性完全恢復的抑制作用就是可逆抑制作用。如果以ν~[E]作圖,可得到一組隨抑制劑濃度增加而斜率降低的直線。可逆抑制作用包括競爭性、反競爭性和非競爭性抑制幾種類型。①競爭性抑制:抑制劑與底物競爭與酶的同一活性中心結合,從而干擾了酶與底物的結合,使酶的催化活性降低,這種作用就稱為競爭性抑制作用。其特點為:a.競爭性抑制劑往往是酶的底物類似物或反應產物;b.抑制劑與酶的結合部位與底物與酶的結合部位相同;c.抑制劑濃度越大,則抑制作用越大;但增加底物濃度可使抑制程度減小;d.動力學參數:Km值增大,Vm值不變。典型的例子是丙二酸對琥珀酸脫氫酶(底物為琥珀酸)的競爭性抑制和磺胺類藥物(對氨基苯磺酰胺)對二氫葉酸合成酶(底物為對氨基苯甲酸)的競爭性抑制。②反競爭性抑制:抑制劑不能與游離酶結合,但可與ES復合物結合并阻止產物生成,使酶的催化活性降低,稱酶的反競爭性抑制。其特點為:a.抑制劑與底物可同時與酶的不同部位結合;b.必須有底物存在,抑制劑才能對酶產生抑制作用;c.動力學參數:Km減小,Vm降低。③非競爭性抑制:抑制劑既可以與游離酶結合,也可以與ES復合物結合,使酶的催化活性降低,稱為非競爭性抑制。其特點為:a.底物和抑制劑分別獨立地與酶的不同部位相結合;b.抑制劑對酶與底物的結合無影響,故底物濃度的改變對抑制程度無影響;c.動力學參數:Km值不變,Vm值降低。6.激活劑對反應速度的影響:能夠促使酶促反應速度加快的物質稱為酶的激活劑。酶的激活劑大多數是金屬離子,如K+、Mg2+、Mn2+等,唾液淀粉酶的激活劑為Cl-。九、酶的調節:可以通過改變其催化活性而使整個代謝反應的速度或方向發生改變的酶就稱為限速酶或關鍵酶。酶活性的調節可以通過改變其結構而使其催化活性以生改變,也可以通過改變其含量來改變其催化活性,還可以通過以不同形式的酶在不同組織中的分布差異來調節代謝活動。1.酶結構的調節:通過對現有酶分子結構的影響來改變酶的催化活性。這是一種快速調節方式。⑴變構調節:又稱別構調節。某些代謝物能與變構酶分子上的變構部位特異性結合,使酶的分子構發生改變,從而改變酶的催化活性以與代謝反應的速度,這種調節作用就稱為變構調節。具有變構調節作用的酶就稱為變構酶。凡能使酶分子變構并使酶的催化活性發生改變的代謝物就稱為變構劑。當變構酶的一個亞基與其配體(底物或變構劑)結合后,能夠通過改變相鄰亞基的構象而使其對配體的親和力發生改變,這種效應就稱為變構酶的協同效應。變構劑一般以反饋方式對代謝途徑的起始關鍵酶進行調節,常見的為負反饋調節。變構調節的特點:①酶活性的改變通過酶分子構象的改變而實現;②酶的變構僅涉與非共價鍵的變化;③調節酶活性的因素為代謝物;④為一非耗能過程;⑤無放大效應。⑵共價修飾調節:酶蛋白分子中的某些基團可以在其他酶的催化下發生共價修飾,從而導致酶活性的改變,稱為共價修飾調節。共價修飾方式有:磷酸化-脫磷酸化等。共價修飾調節一般與激素的調節相聯系,其調節方式為級聯反應。共價修飾調節的特點為:①酶以兩種不同修飾和不同活性的形式存在;②有共價鍵的變化;③受其他調節因素(如激素)的影響;④一般為耗能過程;⑤存在放大效應。⑶酶原的激活:處于無活性狀態的酶的前身物質就稱為酶原。酶原在一定條件下轉化為有活性的酶的過程稱為酶原的激活。酶原的激活過程通常伴有酶蛋白一級結構的改變。酶原分子一級結構的改變導致了酶原分子空間結構的改變,使催化活性中心得以形成,故使其從無活性的酶原形式轉變為有活性的酶。酶原激活的生理意義在于:保護自身組織細胞不被酶水解消化。2.酶含量的調節:是指通過改變細胞中酶蛋白合成或降解的速度來調節酶分子的絕對含量,影響其催化活性,從而調節代謝反應的速度。這是機體內遲緩調節的重要方式。⑴酶蛋白合成的調節:酶蛋白的合成速度通常通過一些誘導劑或阻遏劑來進行調節。凡能促使基因轉錄增強,從而使酶蛋白合成增加的物質就稱為誘導劑;反之,則稱為阻遏劑。常見的誘導劑或阻遏劑包括代謝物、藥物和激素等。⑵酶蛋白降解的調節:如饑餓時,精氨酸酶降解減慢,故酶活性增高,有利于氨基酸的分解供能。3.同工酶的調節:在同一種屬中,催化活性相同而酶蛋白的分子結構,理化性質與免疫學性質不同的一組酶稱為同工酶。同工酶在體內的生理意義主要在于適應不同組織或不同細胞器在代謝上的不同需要。因此,同工酶在體內的生理功能是不同的。乳酸脫氫酶同工酶(LDHs)為四聚體,在體內共有五種分子形式,即LDH1(H4),LDH2(H3M1),LDH3(H2M2),LDH4(H1M3)和LDH5(M4)。心肌中以LDH1含量最多,LDH1對乳酸的親和力較高,因此它的主要作用是催化乳酸轉變為丙酮酸再進一步氧化分解,以供應心肌的能量。在骨骼肌中含量最多的是LDH5,LDH5對丙酮酸的親和力較高,因此它的主要作用是催化丙酮酸轉變為乳酸,以促進糖酵解的進行。十、酶的命名與分類:1.酶的命名:主要有習慣命名法與系統命名法兩種,但常用者為習慣命名法。2.酶的分類:根據1961年國際酶學委員會(IEC)的分類法,將酶分為六大類:①氧化還原酶類:催化氧化還原反應;②轉移酶類:催化一個基團從某種化合物至另一種化合物;③水解酶類:催化化合物的水解反應;④裂合酶類:催化從雙鍵上去掉一個基團或加上一個基團至雙鍵上;⑤異構酶類:催化分子內基團重排;⑥合成酶類:催化兩分子化合物的締合反應。第四章糖代謝一、糖類的生理功用:①氧化供能:糖類是人體最主要的供能物質,占全部供能物質供能量的70%;與供能有關的糖類主要是葡萄糖和糖原,前者為運輸和供能形式,后者為貯存形式。②作為結構成分:糖類可與脂類形成糖脂,或與蛋白質形成糖蛋白,糖脂和糖蛋白均可參與構成生物膜、神經組織等。③作為核酸類化合物的成分:核糖和脫氧核糖參與構成核苷酸,DNA,RNA等。④轉變為其他物質:糖類可經代謝而轉變為脂肪或氨基酸等化合物。二、糖的無氧酵解:糖的無氧酵解是指葡萄糖在無氧條件下分解生成乳酸并釋放出能量的過程。其全部反應過程在胞液中進行,代謝的終產物為乳酸,一分子葡萄糖經無氧酵解可凈生成兩分子ATP。糖的無氧酵解代謝過程可分為四個階段:1.活化(己糖磷酸酯的生成):葡萄糖經磷酸化和異構反應生成1,6-雙磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-雙磷酸果糖(F-1,6-BP)。這一階段需消耗兩分子ATP,己糖激酶(肝中為葡萄糖激酶)和6-磷酸果糖激酶-1是關鍵酶。2.裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解為兩分子3-磷酸甘油醛,包括兩步反應:F-1,6-BP→磷酸二羥丙酮+3-磷酸甘油醛和磷酸二羥丙酮→3-磷酸甘油醛。3.放能(丙酮酸的生成):3-磷酸甘油醛經脫氫、磷酸化、脫水與放能等反應生成丙酮酸,包括五步反應:3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。此階段有兩次底物水平磷酸化的放能反應,共可生成2×2=4分子ATP。丙酮酸激酶為關鍵酶。4.還原(乳酸的生成):利用丙酮酸接受酵解代謝過程中產生的NADH,使NADH重新氧化為NAD+。即丙酮酸→乳酸。三、糖無氧酵解的調節:主要是對三個關鍵酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶進行調節。己糖激酶的變構抑制劑是G-6-P;肝中的葡萄糖激酶是調節肝細胞對葡萄糖吸收的主要因素,受長鏈脂酰CoA的反饋抑制;6-磷酸果糖激酶-1是調節糖酵解代謝途徑流量的主要因素,受ATP和檸檬酸的變構抑制,AMP、ADP、1,6-雙磷酸果糖和2,6-雙磷酸果糖的變構激活;丙酮酸激酶受1,6-雙磷酸果糖的變構激活,受ATP的變構抑制,肝中還受到丙氨酸的變構抑制。四、糖無氧酵解的生理意義:1.在無氧和缺氧條件下,作為糖分解供能的補充途徑:⑴骨骼肌在劇烈運動時的相對缺氧;⑵從平原進入高原初期;⑶嚴重貧血、大量失血、呼吸障礙、肺與心血管疾患所致缺氧。2.在有氧條件下,作為某些組織細胞主要的供能途徑:如表皮細胞,紅細胞與視網膜等,由于無線粒體,故只能通過無氧酵解供能。五、糖的有氧氧化:葡萄糖在有氧條件下徹底氧化分解生成C2O和H2O,并釋放出大量能量的過程稱為糖的有氧氧化。絕大多數組織細胞通過糖的有氧氧化途徑獲得能量。此代謝過程在細胞胞液和線粒體內進行,一分子葡萄糖徹底氧化分解可產生36/38分子ATP。糖的有氧氧化代謝途徑可分為三個階段:1.葡萄糖經酵解途徑生成丙酮酸:此階段在細胞胞液中進行,與糖的無氧酵解途徑相同,涉與的關鍵酶也相同。一分子葡萄糖分解后生成兩分子丙酮酸,兩分子(NADH+H+)并凈生成2分子ATP。NADH在有氧條件下可進入線粒體產能,共可得到2×2或2×3分子ATP。故第一階段可凈生成6/8分子ATP。2.丙酮酸氧化脫羧生成乙酰CoA:丙酮酸進入線粒體,在丙酮酸脫氫酶系的催化下氧化脫羧生成(NADH+H+)和乙酰CoA。此階段可由兩分子(NADH+H+)產生2×3分子ATP。丙酮酸脫氫酶系為關鍵酶,該酶由三種酶單體構成,涉與六種輔助因子,即NAD+、FAD、CoA、TPP、硫辛酸和Mg2+。3.經三羧酸循環徹底氧化分解:生成的乙酰CoA可進入三羧酸循環徹底氧化分解為CO2和H2O,并釋放能量合成ATP。一分子乙酰CoA氧化分解后共可生成12分子ATP,故此階段可生成2×12=24分子ATP。三羧酸循環是指在線粒體中,乙酰CoA首先與草酰乙酸縮合生成檸檬酸,然后經過一系列的代謝反應,乙酰基被氧化分解,而草酰乙酸再生的循環反應過程。這一循環反應過程又稱為檸檬酸循環或Krebs循環。三羧酸循環由八步反應構成:草酰乙酸+乙酰CoA→檸檬酸→異檸檬酸→α-酮戊二酸→琥珀酰CoA→琥珀酸→延胡索酸→蘋果酸→草酰乙酸。三羧酸循環的特點:①循環反應在線粒體中進行,為不可逆反應。②每完成一次循環,氧化分解掉一分子乙酰基,可生成12分子ATP。③循環的中間產物既不能通過此循環反應生成,也不被此循環反應所消耗。④循環中有兩次脫羧反應,生成兩分子CO2。⑤循環中有四次脫氫反應,生成三分子NADH和一分子FADH2。⑥循環中有一次直接產能反應,生成一分子GTP。⑦三羧酸循環的關鍵酶是檸檬酸合酶、異檸檬酸脫氫酶和α-酮戊二酸脫氫酶系,且α-酮戊二酸脫氫酶系的結構與丙酮酸脫氫酶系相似,輔助因子完全相同。六、糖有氧氧化的生理意義:1.是糖在體內分解供能的主要途徑:⑴生成的ATP數目遠遠多于糖的無氧酵解生成的ATP數目;⑵機體內大多數組織細胞均通過此途徑氧化供能。2.是糖、脂、蛋白質氧化供能的共同途徑:糖、脂、蛋白質的分解產物主要經此途徑徹底氧化分解供能。3.是糖、脂、蛋白質相互轉變的樞紐:有氧氧化途徑中的中間代謝物可以由糖、脂、蛋白質分解產生,某些中間代謝物也可以由此途徑逆行而相互轉變。七、有氧氧化的調節和巴斯德效應:丙酮酸脫氫酶系受乙酰CoA、ATP和NADH的變構抑制,受AMP、ADP和NAD+的變構激活。異檸檬酸脫氫酶是調節三羧酸循環流量的主要因素,ATP是其變構抑制劑,AMP和ADP是其變構激活劑。巴斯德效應:糖的有氧氧化可以抑制糖的無氧酵解的現象。有氧時,由于酵解產生的NADH和丙酮酸進入線粒體而產能,故糖的無氧酵解受抑制。八、磷酸戊糖途徑:磷酸戊糖途徑是指從G-6-P脫氫反應開始,經一系列代謝反應生成磷酸戊糖等中間代謝物,然后再重新進入糖氧化分解代謝途徑的一條旁路代謝途徑。該旁路途徑的起始物是G-6-P,返回的代謝產物是3-磷酸甘油醛和6-磷酸果糖,其重要的中間代謝產物是5-磷酸核糖和NADPH。整個代謝途徑在胞液中進行。關鍵酶是6-磷酸葡萄糖脫氫酶。九、磷酸戊糖途徑的生理意義:1.是體內生成NADPH的主要代謝途徑:NADPH在體內可用于:⑴作為供氫體,參與體內的合成代謝:如參與合成脂肪酸、膽固醇等。⑵參與羥化反應:作為加單氧酶的輔酶,參與對代謝物的羥化。⑶維持巰基酶的活性。⑷使氧化型谷胱甘肽還原。⑸維持紅細胞膜的完整性:由于6-磷酸葡萄糖脫氫酶遺傳性缺陷可導致蠶豆病,表現為溶血性貧血。2.是體內生成5-磷酸核糖的唯一代謝途徑:體內合成核苷酸和核酸所需的核糖或脫氧核糖均以5-磷酸核糖的形式提供,其生成方式可以由G-6-P脫氫脫羧生成,也可以由3-磷酸甘油醛和F-6-P經基團轉移的逆反應生成。十、糖原的合成與分解:糖原是由許多葡萄糖分子聚合而成的帶有分支的高分子多糖類化合物。糖原分子的直鏈部分借α-1,4-糖苷鍵而將葡萄糖殘基連接起來,其支鏈部分則是借α-1,6-糖苷鍵而形成分支。糖原是一種無還原性的多糖。糖原的合成與分解代謝主要發生在肝、腎和肌肉組織細胞的胞液中。1.糖原的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煉油廠智能化與大數據應用考核試卷
- 電氣機械系統的智能化旅游應用考核試卷
- 糖批發企業市場競爭力評估與提升考核試卷
- 8-1數模轉換電子課件
- 朋友和我初二語文作文
- 汽車配件售后服務提升考核試卷
- 稀土金屬加工中的設備投資與經濟效益分析案例考核試卷
- 疏散通道的安全標識與規范設置考核試卷
- 碳素材料在化學合成中的催化作用考核試卷
- 手腕康復器材考核試卷
- 大車司機勞務協議書
- 中醫把脈入門培訓課件
- 學生軍訓教官合同協議
- 期刊編輯的學術期刊內容審核標準考核試卷
- 知識產權監管培訓課件
- 油田節能降耗技術-全面剖析
- 廣西欽州市欽州港經濟技術開發區中學2025年初三第二學期第一次區模擬化學試題含解析
- 技術信息收集與分析方法考核試卷
- 婦科護理標準化管理
- 小學2025年國防教育課程開發計劃
- 2025屆安徽省示范高中皖北協作區高三下學期一模考試英語試題(原卷版+解析版)
評論
0/150
提交評論