




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.拋物線y=4x2﹣3的頂點坐標是()A.(0,3) B.(0,﹣3) C.(﹣3,0) D.(4,﹣3)2.下列命題正確的個數有()①兩邊成比例且有一角對應相等的兩個三角形相似;②對角線相等的四邊形是矩形;③任意四邊形的中點四邊形是平行四邊形;④兩個相似多邊形的面積比為2:3,則周長比為4:1.A.1個 B.2個 C.3個 D.4個3.如圖是由5個完全相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.4.一元二次方程的根的情況是A.有兩個不相等的實數根 B.有兩個相等的實數根C.只有一個實數根 D.沒有實數根5.如圖,△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=22°,則∠BDC等于A.44° B.60° C.67° D.77°6.拋物線先向下平移1個單位,再向左平移2個單位,所得的拋物線是()A.. B.C. D.7.的絕對值是A. B. C.2018 D.8.如圖是一個幾何體的三視圖,這個幾何體是().A.三棱錐 B.三棱柱 C.長方體 D.圓柱體9.如圖,,垂足為點,,,則的度數為()A. B. C. D.10.拋物線如圖所示,給出以下結論:①,②,③,④,⑤,其中正確的個數是()A.2個 B.3個 C.4個 D.5個11.一個不透明的袋子中有3個白球,4個黃球和5個紅球,這些球除顏色不同外,其他完全相同.從袋子中隨機摸出一個球,則它是黃球的概率是()A. B. C. D.12.將拋物線向上平移個單位長度,再向右平移個單位長度,所得到的拋物線為()A. B.C. D.二、填空題(每題4分,共24分)13.從長度分別是,,,的四根木條中,抽出其中三根能組成三角形的概率是______.14.計算:sin45°=____________.15.已知拋物線與x軸只有一個公共點,則m=___________.16.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.17.如圖,已知AB,CD是☉O的直徑,弧AE=弧AC,∠AOE=32°,那么∠COE的度數為________度.18.如圖,菱形AD的邊長為2,對角線AC、BD相交于點O,BD=2,分別以AB、BC為直徑作半圓,則圖中陰影部分的面積為__________.三、解答題(共78分)19.(8分)元旦期間,九年級某班六位同學進行跳圈游戲,具體過程如下:圖1所示是一枚質地均勻的正方體骰子,骰子的六個面上的點數分別是1,1,3,4.5,6,如圖1,正六邊形ABCDEF的頂點處各有一個圈.跳圈游戲的規則為:游戲者每投擲一次骰子,假骰子向上的一面上的點數是幾,就沿著正六邊形的邊逆時針方向連續跳幾個邊長.如:若從圈A起跳,第一次擲得3,就逆時針連續跳3個邊長,落到圈D;若第二次擲得1.就從圖D開始逆時針連續起跳1個邊長,落到圈F…,設游戲者從圈A起跳(1)小明隨機擲一次骰子,求落回到圈A的概率P1;(1)小亮隨機擲兩次骰子,用列表法或畫樹狀圖法求最后落回到圈A的概率P1.20.(8分)為紀念“五四運動”100周年,某校舉行了征文比賽,該校學生全部參加了比賽.比賽設置一等、二等、三等三個獎項,賽后該校對學生獲獎情況做了抽樣調查,并將所得數據繪制成如圖所示的兩幅不完整的統計圖.根據圖中信息解答下列問題:(1)本次抽樣調查學生的人數為.(2)補全兩個統計圖,并求出扇形統計圖中A所對應扇形圓心角的度數.(3)若該校共有840名學生,請根據抽樣調查結果估計獲得三等獎的人數.21.(8分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊做正方形ADEF,連接CF(1)如圖1,當點D在線段BC上時.求證CF+CD=BC;(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關系;(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F分別在直線BC的兩側,其他條件不變;①請直接寫出CF,BC,CD三條線段之間的關系;②若正方形ADEF的邊長為,對角線AE,DF相交于點O,連接OC.求OC的長度.22.(10分)已知拋物線經過點和點.求拋物線的解析式;求拋物線與軸的交點的坐標(注:點在點的左邊);求的面積.23.(10分)已知在△ABC中,AB=AC,∠BAC=α,直線l經過點A(不經過點B或點C),點C關于直線l的對稱點為點D,連接BD,CD.(1)如圖1,①求證:點B,C,D在以點A為圓心,AB為半徑的圓上;②直接寫出∠BDC的度數(用含α的式子表示)為;(2)如圖2,當α=60°時,過點D作BD的垂線與直線l交于點E,求證:AE=BD;(3)如圖3,當α=90°時,記直線l與CD的交點為F,連接BF.將直線l繞點A旋轉的過程中,在什么情況下線段BF的長取得最大值?若AC=2a,試寫出此時BF的值.24.(10分)為推進“全國億萬學生陽光體育運動”的實施,組織廣大同學開展健康向上的第二課堂活動.我市某中學準備組建球類社團(足球、籃球、羽毛球、乒乓球)、舞蹈社團、健美操社團、武術社團,為了解在校學生對這4個社團活動的喜愛情況,該校隨機抽取部分初中生進行了“你最喜歡哪個社團”調查,依據相關數據繪制成以下不完整的統計表,請根據圖表中的信息解答下列問題:(1)求樣本容量及表格中、的值;(2)請補全統計圖;(3)被調查的60個喜歡球類同學中有3人最喜歡足球,若該校有3000名學生,請估計該校最喜歡足球的人數.25.(12分)化簡:26.如圖,直徑為的圓柱形水管有積水(陰影部分),水面的寬度為,求水的最大深度.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據拋物線的頂點坐標為(0,b),可以直接寫出該拋物線的頂點坐標,【詳解】解:拋物線,該拋物線的頂點坐標為,故選:B.【點睛】本題考查二次函數的性質,解答本題的關鍵是明確題意,利用二次函數的性質解答.2、A【分析】利用相似三角形的判定、矩形的判定方法、平行四邊形的判定方法及相似多邊形的性質分別判斷后即可確定正確的選項.【詳解】①兩邊成比例且夾角對應相等的兩個三角形相似,故錯誤;
②對角線相等的平行四邊形是矩形,故錯誤;
③任意四邊形的中點四邊形是平行四邊形,正確;
④兩個相似多邊形的面積比2:3,則周長比為:,故錯誤,
正確的有1個,
故選A.【點睛】本題考查命題與定理,解題的關鍵是掌握相似三角形的判定、矩形的判定方法、平行四邊形的判定方法及相似多邊形的性質.3、B【分析】主視圖就是從正面看,根據橫豎正方形的個數可以得到答案.【詳解】主視圖就是從正面看,視圖有2層,一層3個正方形,二層左側一個正方形.故選B【點睛】本題考核知識點:三視圖.解題關鍵點:理解三視圖意義.4、D【分析】由根的判別式△判斷即可.【詳解】解:△=b2-4ac=(-4)2-4×5=-4<0,方程沒有實數根.故選擇D.【點睛】本題考查了一元二次方程根與判別式的關系.5、C【解析】分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折疊的性質可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴.故選C.6、A【分析】根據函數圖象平移的法則“左加右減,上加下減”的原則進行解答即可.【詳解】由“上加下減”的原則可知,將拋物線y=3x2先向向下平移1個單位可得到拋物線y=3x2-1;
由“左加右減”的原則可知,將拋物線y=3x2-1先向左平移2個單位可得到拋物線.
故選A.【點睛】本題考查二次函數圖象與幾何變換,解題的關鍵是掌握函數圖象平移的法則“左加右減,上加下減”的原則.7、C【解析】根據數a的絕對值是指數軸表示數a的點到原點的距離進行解答即可得.【詳解】數軸上表示數-2018的點到原點的距離是2018,所以-2018的絕對值是2018,故選C.【點睛】本題考查了絕對值的意義,熟練掌握絕對值的定義是解題的關鍵.8、B【解析】試題解析:根據三視圖的知識,主視圖為三角形,左視圖為一個矩形,俯視圖為兩個矩形,故這個幾何體為三棱柱.故選B.9、B【解析】由平行線的性質可得,繼而根據垂直的定義即可求得答案.【詳解】,,,,∴∠BCE=90°,∴∠ACE=∠BCE-∠ACB=90°-40°=50°,故選B.【點睛】本題考查了垂線的定義,平行線的性質,熟練掌握相關知識是解題的關鍵.10、D【分析】根據拋物線開口方向、拋物線的對稱軸位置和拋物線與y軸的交點位置可判斷a、b、c的符號,再根據與x軸的交點坐標代入分析即可得到結果;【詳解】∵拋物線開口向上,∴a>0,∵拋物線的對稱軸在y軸的右側,∴b<0,∵拋物線與y軸的交點在x軸的下方,∴c<0,∴ab<0,故①②正確;當x=-1時,,故③正確;當x=1時,根據圖象可得,故④正確;根據函數圖像與x軸有兩個交點可得,故⑤正確;故答案選D.【點睛】本題主要考查了二次函數圖象與系數的關系,準確分析每一個數據是解題的關鍵.11、B【分析】利用概率公式直接計算即可.【詳解】解:根據題意可得:袋子中有有3個白球,4個黃球和5個紅球,共12個,從袋子中隨機摸出一個球,它是黃色球的概率.故選B.【點睛】本題考查概率的計算,掌握公式正確計算是本題的解題關鍵.12、B【分析】根據“左加右減”,“上加下減”的平移規律即可得出答案.【詳解】將拋物線向上平移個單位長度,再向右平移個單位長度,所得到的拋物線為故選:B.【點睛】本題考查二次函數圖象的平移,熟練掌握平移規律是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】四根木條中,抽出其中三根的組合有4種,計算出能組成三角形的組合,利用概率公式進行求解即可.【詳解】解:能組成三角形的組合有:4,8,10;4,10,12;8,10,12三種情況,故抽出其中三根能組成三角形的概率是.【點睛】本題考查了列舉法求概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=,構成三角形的基本要求為兩小邊之和大于最大邊.14、1.【分析】根據sin45°=代入計算即可.【詳解】sin45°=,故答案為:1.【點睛】本題考查特殊角的三角函數值,熟練記憶是關鍵.15、【解析】試題分析:根據拋物線解析式可知其對稱軸為x=,根據其與x軸只有一個交點,可知其頂點在x軸上,因此可知x=時,y=0,代入可求得m=.點睛:此題主要考查了二次函數的圖像與性質,解題關鍵是明確與x軸只有一個交點的位置是拋物線的頂點在x軸上,因此可求出對稱軸代入即可.16、【詳解】解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質以及銳角三角函數關系等知識,得出A′點位置是解題關鍵.17、64【分析】根據等弧所對的圓心角相等求得∠AOE=∠COA=32°,所以∠COE=∠AOE+∠COA=64°.【詳解】解:∵弧AE=弧AC,(已知)
∴∠AOE=∠COA(等弧所對的圓心角相等);
又∠AOE=32°,
∴∠COA=32°,
∴∠COE=∠AOE+∠COA=64°.
故答案是:64°.【點睛】本題考查圓心角、弧、弦的關系.在同圓或等圓中,兩個圓心角、兩條弧、兩條弦三組量之間,如果有一組量相等,那么,它們所對應的其它量也相等.18、-【分析】設BC的中點為M,CD交半圓M于點N,連接OM,MN.易證?BCD是等邊三角形,進而得∠OMN=60°,即可求出;再證四邊形OMND是菱形,連接ON,MD,求出,利用,即可求解.【詳解】設BC的中點為M,CD交半圓M于點N,連接OM,MN.∵四邊形ABCD是菱形,∴BD⊥AC,∴兩個半圓都經過點O,∵BD=BC=CD=2,∴?BCD是等邊三角形,∴∠BCD=60°,∴∠OCD=30°,∴∠OMN=60°,∴,∵OD=OM=MN=CN=DN=1,∴四邊形OMND是菱形,連接ON,MD,則MD⊥BC,?OMN是等邊三角形,∴MD=CM=,ON=1,∴MD×ON=,∴.故答是:-【點睛】本題主要考查菱形的性質和扇形的面積公式,添加輔助線,構造等邊三角形和扇形,利用割補法求面積,是解題的關鍵.三、解答題(共78分)19、(1);(1)【分析】(1)直接利用概率公式求解;
(1)先畫樹狀圖得到36種等可能的結果,再找出兩數的和為6的倍數的結果數,然后根據概率公式求解.【詳解】(1)共有6種等可能的結果,落回到圈A的只有1種情況,∴落回到圈A的概率P1=;(1)畫樹狀圖為:∵共有36種等可能的結果,最后落回到圈A的有(1,5),(1,4),(3,3),(4,1),(5,1),(6,6),∴小亮最后落回到圈A的概率P1==.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式計算事件A或事件B的概率.20、(1)40;(2)見解析,18°;(3)獲得三等獎的有210人.【分析】(1)根據B的人數和所占的百分比可以求得本次抽樣調查學生人數;(2)根據統計圖中的數據和(1)中的結果可以將統計圖中所缺的數據補充完整并計算出扇形統計圖中A所對應扇形圓心角的度數;(3)根據統計圖中的數據可以計算出獲得三等獎的人數.【詳解】解:(1)本次抽樣調查學生的人數為:8÷20%=40,故答案為:40;(2)A所占的百分比為:×100%=5%,D所占的百分比為:×100%=50%,C所占的百分比為:1﹣5%﹣20%﹣50%=25%,獲得三等獎的人數為:40×25%=10,補全的統計圖如圖所示,扇形統計圖中A所對應扇形圓心角的度數是360°×5%=18°;(3)840×25%=210(人),答:獲得三等獎的有210人.【點睛】本題考查條形統計圖、扇形統計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數形結合的思想解答.21、(1)證明見解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.【分析】(1)三角形ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據此即可證得.(1)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF﹣CD=BC.(3)①同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CD﹣CB=CF.②證明△BAD≌△CAF,△FCD是直角三角形,然后根據正方形的性質即可求得DF的長,則OC即可求得.【詳解】解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴BD=CF.∵BD+CD=BC,∴CF+CD=BC.(1)CF-CD=BC;
理由:∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS)
∴BD=CF
∴BC+CD=CF,
∴CF-CD=BC;
(3)①∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∴CD-BC=CF,②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴∠ACF=∠ABD.∵∠ABC=45°,∴∠ABD=135°.∴∠ACF=∠ABD=135°.∴∠FCD=90°.∴△FCD是直角三角形.∵正方形ADEF的邊長為且對角線AE、DF相交于點O,∴DF=AD=4,O為DF中點.∴OC=DF=1.22、(1);(2)點,點;(3)6.【分析】(1)將點和點代入即可求出解析式;(2)令y=0,解出的x的值即可得到點A、B的坐標;(3)根據點坐標求得,代入面積公式計算即可.【詳解】(1)把點和點代入得解得所以拋物線的解析式為:;(2)把代入,得,解得,點在點的左邊,點,點;(3)連接AC、BC,由題意得,.【點睛】此題考查待定系數法求二次函數的解析式,二次函數圖形與一元二次方程的關系,利用點坐標求圖象中三角形的面積.23、(1)①詳見解析;②α;(2)詳見解析;(3)當B、O、F三點共線時BF最長,(+)a【分析】(1)①由線段垂直平分線的性質可得AD=AC=AB,即可證點B,C,D在以點A為圓心,AB為半徑的圓上;②由等腰三角形的性質可得∠BAC=2∠BDC,可求∠BDC的度數;(2)連接CE,由題意可證△ABC,△DCE是等邊三角形,可得AC=BC,∠DCE=60°=∠ACB,CD=CE,根據“SAS”可證△BCD≌△ACE,可得AE=BD;(3)取AC的中點O,連接OB,OF,BF,由三角形的三邊關系可得,當點O,點B,點F三點共線時,BF最長,根據等腰直角三角形的性質和勾股定理可求,,即可求得BF【詳解】(1)①連接AD,如圖1.∵點C與點D關于直線l對稱,∴AC=AD.∵AB=AC,∴AB=AC=AD.∴點B,C,D在以A為圓心,AB為半徑的圓上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=α故答案為:α.(2連接CE,如圖2.∵∠BAC=60°,AB=AC,∴△ABC是等邊三角形,∴BC=AC,∠ACB=60°,∵∠BDC=α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵點C關于直線l的對稱點為點D,∴DE=CE,且∠CDE=60°∴△CDE是等邊三角形,∴CD=CE=DE,∠DCE=60°=∠ACB,∴∠BCD=∠ACE,且AC=BC,CD=CE,∴△B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 社區反貧困與可持續發展考核試卷
- 消費級機器人傳感器技術與應用考核試卷
- 游戲行業法律法規及合規管理考核試卷
- 油氣倉儲自動化控制考核試卷
- 旅館業供應鏈與物流管理考核試卷
- 昆明衛生職業學院《三維地質建模與可視化》2023-2024學年第二學期期末試卷
- 遼寧省丹東市重點名校2024-2025學年初三3月模擬考試數學試題含解析
- 吉林省長春市德惠市2025屆初三下學期模擬考試(一)語文試題含解析
- 平頂山文化藝術職業學院《高層建筑結構設計》2023-2024學年第二學期期末試卷
- 山東省泰安市2025屆高三年級模擬考試(二)生物試題含解析
- 2025年中考數學一輪復習 -第六章 圓-第二節 與圓有關的位置關系
- 大學物理(一)知到智慧樹章節測試課后答案2024年秋湖南大學
- 中建質量樣板策劃實施方案
- 湖北省武漢市2025屆高三第一次模擬考試數學試卷含解析
- 2025屆新高考語文古詩文理解性默寫匯編(新高考60篇含答案)
- 《數字中國建設整體布局規劃》解讀報告
- 《石油化工金屬管道布置設計規范》SHT3012-2011
- 2024年大學物理磁場教案設計示范
- 國開汽車學院《項目管理》形考作業1-4答案
- 醫學影像科提高診斷報告與手術后符合率持續性改進PDCA
- 2024年江蘇省蘇州市中考生物試卷含答案
評論
0/150
提交評論