2023-2024學(xué)年福建省三明建寧縣聯(lián)考中考二模數(shù)學(xué)試題含解析_第1頁(yè)
2023-2024學(xué)年福建省三明建寧縣聯(lián)考中考二模數(shù)學(xué)試題含解析_第2頁(yè)
2023-2024學(xué)年福建省三明建寧縣聯(lián)考中考二模數(shù)學(xué)試題含解析_第3頁(yè)
2023-2024學(xué)年福建省三明建寧縣聯(lián)考中考二模數(shù)學(xué)試題含解析_第4頁(yè)
2023-2024學(xué)年福建省三明建寧縣聯(lián)考中考二模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年福建省三明建寧縣聯(lián)考中考二模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F(xiàn)分別為AB,AC,AD的中點(diǎn),若BC=2,則EF的長(zhǎng)度為()A.12B.1C.322.如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC3.如果一組數(shù)據(jù)1、2、x、5、6的眾數(shù)是6,則這組數(shù)據(jù)的中位數(shù)是()A.1 B.2 C.5 D.64.若關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則一次函數(shù)的圖象可能是:A. B. C. D.5.的相反數(shù)是()A. B.﹣ C.﹣ D.6.圖1~圖4是四個(gè)基本作圖的痕跡,關(guān)于四條弧①、②、③、④有四種說(shuō)法:弧①是以O(shè)為圓心,任意長(zhǎng)為半徑所畫(huà)的弧;弧②是以P為圓心,任意長(zhǎng)為半徑所畫(huà)的弧;弧③是以A為圓心,任意長(zhǎng)為半徑所畫(huà)的弧;弧④是以P為圓心,任意長(zhǎng)為半徑所畫(huà)的弧;其中正確說(shuō)法的個(gè)數(shù)為()A.4 B.3 C.2 D.17.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.8.下列各式中計(jì)算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t9.下列分子結(jié)構(gòu)模型的平面圖中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10.下列說(shuō)法中,正確的是()A.兩個(gè)全等三角形,一定是軸對(duì)稱的B.兩個(gè)軸對(duì)稱的三角形,一定是全等的C.三角形的一條中線把三角形分成以中線為軸對(duì)稱的兩個(gè)圖形D.三角形的一條高把三角形分成以高線為軸對(duì)稱的兩個(gè)圖形二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(﹣3,2),則k的值是_____.當(dāng)x大于0時(shí),y隨x的增大而_____.(填增大或減小)12.如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為位似中心在y軸的左側(cè)將△OAB縮小得到△OA′B′,若△OAB與△OA′B′的相似比為2:1,則點(diǎn)B(3,﹣2)的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為_(kāi)____.13.若實(shí)數(shù)a、b在數(shù)軸上的位置如圖所示,則代數(shù)式|b﹣a|+化簡(jiǎn)為_(kāi)____.14.一個(gè)不透明的口袋中有2個(gè)紅球,1個(gè)黃球,1個(gè)白球,每個(gè)球除顏色不同外其余均相同.小溪同學(xué)從口袋中隨機(jī)取出兩個(gè)小球,則小溪同學(xué)取出的是一個(gè)紅球、一個(gè)白球的概率為_(kāi)____.15.半徑是6cm的圓內(nèi)接正三角形的邊長(zhǎng)是_____cm.16.因式分解:a2b+2ab+b=.三、解答題(共8題,共72分)17.(8分)已知關(guān)于x的一元二次方程kx2﹣6x+1=0有兩個(gè)不相等的實(shí)數(shù)根.(1)求實(shí)數(shù)k的取值范圍;(2)寫(xiě)出滿足條件的k的最大整數(shù)值,并求此時(shí)方程的根.18.(8分)(11分)閱讀資料:如圖1,在平面之間坐標(biāo)系xOy中,A,B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B兩點(diǎn)間的距離為AB=.我們知道,圓可以看成到圓心距離等于半徑的點(diǎn)的集合,如圖1,在平面直角坐標(biāo)系xoy中,A(x,y)為圓上任意一點(diǎn),則A到原點(diǎn)的距離的平方為OA1=|x﹣0|1+|y﹣0|1,當(dāng)⊙O的半徑為r時(shí),⊙O的方程可寫(xiě)為:x1+y1=r1.問(wèn)題拓展:如果圓心坐標(biāo)為P(a,b),半徑為r,那么⊙P的方程可以寫(xiě)為.綜合應(yīng)用:如圖3,⊙P與x軸相切于原點(diǎn)O,P點(diǎn)坐標(biāo)為(0,6),A是⊙P上一點(diǎn),連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長(zhǎng)PD交x軸于點(diǎn)B,連接AB.①證明AB是⊙P的切點(diǎn);②是否存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q?若存在,求Q點(diǎn)坐標(biāo),并寫(xiě)出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說(shuō)明理由.19.(8分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點(diǎn),P是AB上的任意一點(diǎn),連接PE,將PE繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過(guò)A點(diǎn),D點(diǎn)作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點(diǎn),求點(diǎn)E所經(jīng)過(guò)的路徑弧EQ的長(zhǎng)(結(jié)果保留π);(3)若點(diǎn)Q落在AB或AD邊所在直線上,請(qǐng)直接寫(xiě)出BP的長(zhǎng).20.(8分)如圖,現(xiàn)有一塊鋼板余料,它是矩形缺了一角,.王師傅準(zhǔn)備從這塊余料中裁出一個(gè)矩形(為線段上一動(dòng)點(diǎn)).設(shè),矩形的面積為.(1)求與之間的函數(shù)關(guān)系式,并注明的取值范圍;(2)為何值時(shí),取最大值?最大值是多少?21.(8分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+2的圖象交x軸于點(diǎn)P,二次函數(shù)y=﹣x2+x+m的圖象與x軸的交點(diǎn)為(x1,0)、(x2,0),且+=17(1)求二次函數(shù)的解析式和該二次函數(shù)圖象的頂點(diǎn)的坐標(biāo).(2)若二次函數(shù)y=﹣x2+x+m的圖象與一次函數(shù)y=﹣x+2的圖象交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),在x軸上是否存在點(diǎn)M,使得△MAB是以∠ABM為直角的直角三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.22.(10分)如圖,已知?ABCD.作∠B的平分線交AD于E點(diǎn)。(用尺規(guī)作圖法,保留作圖痕跡,不要求寫(xiě)作法);若?ABCD的周長(zhǎng)為10,CD=2,求DE的長(zhǎng)。23.(12分)已知如圖,直線y=﹣x+4與x軸相交于點(diǎn)A,與直線y=x相交于點(diǎn)P.(1)求點(diǎn)P的坐標(biāo);(2)動(dòng)點(diǎn)E從原點(diǎn)O出發(fā),沿著O→P→A的路線向點(diǎn)A勻速運(yùn)動(dòng)(E不與點(diǎn)O、A重合),過(guò)點(diǎn)E分別作EF⊥x軸于F,EB⊥y軸于B.設(shè)運(yùn)動(dòng)t秒時(shí),F(xiàn)的坐標(biāo)為(a,0),矩形EBOF與△OPA重疊部分的面積為S.直接寫(xiě)出:S與a之間的函數(shù)關(guān)系式(3)若點(diǎn)M在直線OP上,在平面內(nèi)是否存在一點(diǎn)Q,使以A,P,M,Q為頂點(diǎn)的四邊形為矩形且滿足矩形兩邊AP:PM之比為1:若存在直接寫(xiě)出Q點(diǎn)坐標(biāo)。若不存在請(qǐng)說(shuō)明理由。24.在一個(gè)不透明的口袋里裝有四個(gè)球,這四個(gè)球上分別標(biāo)記數(shù)字﹣3、﹣1、0、2,除數(shù)字不同外,這四個(gè)球沒(méi)有任何區(qū)別.從中任取一球,求該球上標(biāo)記的數(shù)字為正數(shù)的概率;從中任取兩球,將兩球上標(biāo)記的數(shù)字分別記為x、y,求點(diǎn)(x,y)位于第二象限的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)題意求出AB的值,由D是AB中點(diǎn)求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點(diǎn),∴CD=12AB=12∵E,F分別為AC,AD的中點(diǎn),∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是三角形中位線定理,解題的關(guān)鍵是熟練的掌握三角形中位線定理.2、D【解析】

由全等三角形的判定方法ASA證出△ABD≌△ACD,得出A正確;由全等三角形的判定方法AAS證出△ABD≌△ACD,得出B正確;由全等三角形的判定方法SAS證出△ABD≌△ACD,得出C正確.由全等三角形的判定方法得出D不正確;【詳解】A正確;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正確;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正確;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正確,由這些條件不能判定三角形全等;故選:D.【點(diǎn)睛】本題考查了全等三角形的判定方法;三角形全等的判定是中考的熱點(diǎn),熟練掌握全等三角形的判定方法是解決問(wèn)題的關(guān)鍵.3、C【解析】分析:根據(jù)眾數(shù)的定義先求出x的值,再把數(shù)據(jù)按從小到大的順序排列,找出最中間的數(shù),即可得出答案.詳解:∵數(shù)據(jù)1,2,x,5,6的眾數(shù)為6,∴x=6,把這些數(shù)從小到大排列為:1,2,5,6,6,最中間的數(shù)是5,則這組數(shù)據(jù)的中位數(shù)為5;故選C.點(diǎn)睛:本題考查了中位數(shù)的知識(shí)點(diǎn),將一組數(shù)據(jù)按照從小到大的順序排列,如果數(shù)據(jù)的個(gè)數(shù)為奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個(gè)數(shù)為偶數(shù),則中間兩個(gè)數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).4、B【解析】

由方程有兩個(gè)不相等的實(shí)數(shù)根,可得,解得,即異號(hào),當(dāng)時(shí),一次函數(shù)的圖象過(guò)一三四象限,當(dāng)時(shí),一次函數(shù)的圖象過(guò)一二四象限,故答案選B.5、B【解析】

一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“﹣”號(hào),由此即可求解.【詳解】解:的相反數(shù)是﹣.故選:B.【點(diǎn)睛】本題考查了相反數(shù)的意義,一個(gè)數(shù)的相反數(shù)就是在這個(gè)數(shù)前面添上“﹣”號(hào):一個(gè)正數(shù)的相反數(shù)是負(fù)數(shù),一個(gè)負(fù)數(shù)的相反數(shù)是正數(shù),1的相反數(shù)是1.6、C【解析】

根據(jù)基本作圖的方法即可得到結(jié)論.【詳解】解:(1)弧①是以O(shè)為圓心,任意長(zhǎng)為半徑所畫(huà)的弧,正確;(2)弧②是以P為圓心,大于點(diǎn)P到直線的距離為半徑所畫(huà)的弧,錯(cuò)誤;(3)弧③是以A為圓心,大于AB的長(zhǎng)為半徑所畫(huà)的弧,錯(cuò)誤;(4)弧④是以P為圓心,任意長(zhǎng)為半徑所畫(huà)的弧,正確.故選C.【點(diǎn)睛】此題主要考查了基本作圖,解決問(wèn)題的關(guān)鍵是掌握基本作圖的方法.7、B【解析】

設(shè)以AB、AC為直徑作半圓交BC于D點(diǎn),連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.8、D【解析】試題解析:A、原式計(jì)算錯(cuò)誤,故本選項(xiàng)錯(cuò)誤;B、原式計(jì)算錯(cuò)誤,故本選項(xiàng)錯(cuò)誤;C、原式計(jì)算錯(cuò)誤,故本選項(xiàng)錯(cuò)誤;D、原式計(jì)算正確,故本選項(xiàng)正確;故選D.點(diǎn)睛:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.9、C【解析】

根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A是軸對(duì)稱圖形,不是中心對(duì)稱圖形;B,C,D是軸對(duì)稱圖形,也是中心對(duì)稱圖形.故選:C.【點(diǎn)睛】掌握中心對(duì)稱圖形與軸對(duì)稱圖形的概念:軸對(duì)稱圖形:如果一個(gè)圖形沿著一條直線對(duì)折后兩部分完全重合,這樣的圖形叫做軸對(duì)稱圖形;中心對(duì)稱圖形:在同一平面內(nèi),如果把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形.10、B【解析】根據(jù)軸對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.解:A.兩個(gè)全等三角形,一定是軸對(duì)稱的錯(cuò)誤,三角形全等位置上不一定關(guān)于某一直線對(duì)稱,故本選項(xiàng)錯(cuò)誤;B.兩個(gè)軸對(duì)稱的三角形,一定全等,正確;C.三角形的一條中線把三角形分成以中線為軸對(duì)稱的兩個(gè)圖形,錯(cuò)誤;D.三角形的一條高把三角形分成以高線為軸對(duì)稱的兩個(gè)圖形,錯(cuò)誤.故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、﹣6增大【解析】

∵反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,則y隨x的增大而增大.故答案為﹣6;增大.【點(diǎn)睛】本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質(zhì):(1)當(dāng)k>0時(shí),函數(shù)圖象在一,三象限,在每個(gè)象限內(nèi),y隨x的增大而減小;(2)當(dāng)k<0時(shí),函數(shù)圖象在二,四象限,在每個(gè)象限內(nèi),y隨x的增大而增大.12、(-,1)【解析】

根據(jù)如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或?k進(jìn)行解答.【詳解】解:∵以原點(diǎn)O為位似中心,相似比為:2:1,將△OAB縮小為△OA′B′,點(diǎn)B(3,?2)則點(diǎn)B(3,?2)的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為:(-,1),故答案為(-,1).【點(diǎn)睛】本題考查了位似變換:位似圖形與坐標(biāo),在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或?k.13、2a﹣b.【解析】

直接利用數(shù)軸上a,b的位置進(jìn)而得出b﹣a<0,a>0,再化簡(jiǎn)得出答案.【詳解】解:由數(shù)軸可得:b﹣a<0,a>0,則|b﹣a|+=a﹣b+a=2a﹣b.故答案為2a﹣b.【點(diǎn)睛】此題主要考查了二次根式的性質(zhì)與化簡(jiǎn),正確得出各項(xiàng)符號(hào)是解題關(guān)鍵.14、【解析】

先畫(huà)樹(shù)狀圖求出所有等可能的結(jié)果數(shù),再找出從口袋中隨機(jī)摸出2個(gè)球,摸到的兩個(gè)球是一紅一白的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:根據(jù)題意畫(huà)樹(shù)狀圖如下:共有12種等可能的結(jié)果數(shù),其中從口袋中隨機(jī)摸出2個(gè)球,摸到的一個(gè)紅球、一個(gè)白球的結(jié)果數(shù)為4,所以從口袋中隨機(jī)摸出2個(gè)球,則摸到的兩個(gè)球是一白一黃的概率為.故答案為.【點(diǎn)睛】此題考查的是用列表法或樹(shù)狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹(shù)狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.15、6【解析】

根據(jù)題意畫(huà)出圖形,作出輔助線,利用垂徑定理及等邊三角形的性質(zhì)解答即可.【詳解】如圖所示,OB=OA=6,∵△ABC是正三角形,由于正三角形的中心就是圓的圓心,且正三角形三線合一,所以BO是∠ABC的平分線;∠OBD=60°×=30°,BD=cos30°×6=6×=3;根據(jù)垂徑定理,BC=2×BD=6,故答案為6.【點(diǎn)睛】本題主要考查了正多邊形和圓,正三角形的性質(zhì),熟練掌握等邊三角形的性質(zhì)是解題的關(guān)鍵,根據(jù)圓的內(nèi)接正三角形的特點(diǎn),求出內(nèi)心到每個(gè)頂點(diǎn)的距離,可求出內(nèi)接正三角形的邊長(zhǎng).16、b2【解析】該題考查因式分解的定義首先可以提取一個(gè)公共項(xiàng)b,所以a2b+2ab+b=b(a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a2b+2ab+b=b(a2+2a+1)=b2三、解答題(共8題,共72分)17、(1)(2),【解析】【分析】(1)根據(jù)一元二次方程的定義可知k≠0,再根據(jù)方程有兩個(gè)不相等的實(shí)數(shù)根,可知△>0,從而可得關(guān)于k的不等式組,解不等式組即可得;(2)由(1)可寫(xiě)出滿足條件的k的最大整數(shù)值,代入方程后求解即可得.【詳解】(1)依題意,得,解得且;(2)∵是小于9的最大整數(shù),∴此時(shí)的方程為,解得,.【點(diǎn)睛】本題考查了一元二次方程根的判別式、一元二次方程的定義、解一元二次方程等,熟練一元二次方程根的判別式與一元二次方程的根的情況是解題的關(guān)鍵.18、問(wèn)題拓展:(x﹣a)1+(y﹣b)1=r1綜合應(yīng)用:①見(jiàn)解析②點(diǎn)Q的坐標(biāo)為(4,3),方程為(x﹣4)1+(y﹣3)1=15.【解析】試題分析:?jiǎn)栴}拓展:設(shè)A(x,y)為⊙P上任意一點(diǎn),則有AP=r,根據(jù)閱讀材料中的兩點(diǎn)之間距離公式即可求出⊙P的方程;綜合應(yīng)用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,從而可證到△POB≌△PAB,則有∠POB=∠PAB.由⊙P與x軸相切于原點(diǎn)O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切線;②當(dāng)點(diǎn)Q在線段BP中點(diǎn)時(shí),根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得QO=QP=BQ=AQ.易證∠OBP=∠POA,則有tan∠OBP==.由P點(diǎn)坐標(biāo)可求出OP、OB.過(guò)點(diǎn)Q作QH⊥OB于H,易證△BHQ∽△BOP,根據(jù)相似三角形的性質(zhì)可求出QH、BH,進(jìn)而求出OH,就可得到點(diǎn)Q的坐標(biāo),然后運(yùn)用問(wèn)題拓展中的結(jié)論就可解決問(wèn)題.試題解析:解:?jiǎn)栴}拓展:設(shè)A(x,y)為⊙P上任意一點(diǎn),∵P(a,b),半徑為r,∴AP1=(x﹣a)1+(y﹣b)1=r1.故答案為(x﹣a)1+(y﹣b)1=r1;綜合應(yīng)用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P與x軸相切于原點(diǎn)O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切線;②存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q.當(dāng)點(diǎn)Q在線段BP中點(diǎn)時(shí),∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此時(shí)點(diǎn)Q到四點(diǎn)O,P,A,B距離都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P點(diǎn)坐標(biāo)為(0,6),∴OP=6,OB=OP=3.過(guò)點(diǎn)Q作QH⊥OB于H,如圖3,則有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=3﹣4=4,∴點(diǎn)Q的坐標(biāo)為(4,3),∴OQ==5,∴以Q為圓心,以O(shè)Q為半徑的⊙O的方程為(x﹣4)1+(y﹣3)1=15.考點(diǎn):圓的綜合題;全等三角形的判定與性質(zhì);等腰三角形的性質(zhì);直角三角形斜邊上的中線;勾股定理;切線的判定與性質(zhì);相似三角形的判定與性質(zhì);銳角三角函數(shù)的定義.19、(1)1213;(2)5π;(3)PB的值為10526或【解析】

(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質(zhì)可得出對(duì)應(yīng)邊相等,根據(jù)勾股定理可求出AM的值,即可得出結(jié)論;(2)連接AC,根據(jù)勾股定理求出AC的長(zhǎng),再根據(jù)弧長(zhǎng)計(jì)算公式即可得出結(jié)論;(3)當(dāng)點(diǎn)Q落在直線AB上時(shí),根據(jù)相似三角形的性質(zhì)可得對(duì)應(yīng)邊成比例,即可求出PB的值;當(dāng)點(diǎn)Q在DA的延長(zhǎng)線上時(shí),作PH⊥AD交DA的延長(zhǎng)線于H,延長(zhǎng)HP交BC于G,設(shè)PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質(zhì)可得對(duì)應(yīng)邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長(zhǎng)==5π.(3)如圖3中,當(dāng)點(diǎn)Q落在直線AB上時(shí),∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當(dāng)點(diǎn)Q在DA的延長(zhǎng)線上時(shí),作PH⊥AD交DA的延長(zhǎng)線于H,延長(zhǎng)HP交BC于G.設(shè)PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.【點(diǎn)睛】本題考查了相似三角形與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì).20、(1);(1)時(shí),取最大值,為.【解析】

(1)分別延長(zhǎng)DE,F(xiàn)P,與BC的延長(zhǎng)線相交于G,H,由AF=x知CH=x-4,根據(jù),即可得z=,利用矩形的面積公式即可得出解析式;

(1)將(1)中所得解析式配方成頂點(diǎn)式,利用二次函數(shù)的性質(zhì)解答可得.【詳解】解:(1)分別延長(zhǎng)DE,F(xiàn)P,與BC的延長(zhǎng)線相交于G,H,

∵AF=x,

∴CH=x-4,

設(shè)AQ=z,PH=BQ=6-z,

∵PH∥EG,

∴,即,

化簡(jiǎn)得z=,

∴y=?x=-x1+x(4≤x≤10);

(1)y=-x1+x=-(x-)1+,

當(dāng)x=dm時(shí),y取最大值,最大值是dm1.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是根據(jù)相似三角形的性質(zhì)得出矩形另一邊AQ的長(zhǎng)及二次函數(shù)的性質(zhì).21、(1)y=﹣x2+x+2=(x﹣)2+,頂點(diǎn)坐標(biāo)為(,);(2)存在,點(diǎn)M(,0).理由見(jiàn)解析.【解析】

(1)由根與系數(shù)的關(guān)系,結(jié)合已知條件可得9+4m=17,解方程求得m的值,即可得求得二次函數(shù)的解析式,再求得該二次函數(shù)圖象的頂點(diǎn)的坐標(biāo)即可;(2)存在,將拋物線表達(dá)式和一次函數(shù)y=﹣x+2聯(lián)立并解得x=0或,即可得點(diǎn)A、B的坐標(biāo)為(0,2)、(,),由此求得PB=,AP=2,過(guò)點(diǎn)B作BM⊥AB交x軸于點(diǎn)M,證得△APO∽△MPB,根據(jù)相似三角形的性質(zhì)可得,代入數(shù)據(jù)即可求得MP=,再求得OM=,即可得點(diǎn)M的坐標(biāo)為(,0).【詳解】(1)由題意得:x1+x2=3,x1x2=﹣2m,x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,解得:m=2,拋物線的表達(dá)式為:y=﹣x2+x+2=(x﹣)2+,頂點(diǎn)坐標(biāo)為(,);(2)存在,理由:將拋物線表達(dá)式和一次函數(shù)y=﹣x+2聯(lián)立并解得:x=0或,∴點(diǎn)A、B的坐標(biāo)為(0,2)、(,),一次函數(shù)y=﹣x+2與x軸的交點(diǎn)P的坐標(biāo)為(6,0),∵點(diǎn)P的坐標(biāo)為(6,0),B的坐標(biāo)為(,),點(diǎn)B的坐標(biāo)為(0,2)、∴PB==,AP==2過(guò)點(diǎn)B作BM⊥AB交x軸于點(diǎn)M,∵∠MBP=∠AOP=90°,∠MPB=∠APO,∴△APO∽△MPB,∴,∴,∴MP=,∴OM=OP﹣MP=6﹣=,∴點(diǎn)M(,0).【點(diǎn)睛】本題是一道二次函數(shù)的綜合題,一元二次方程根與系數(shù)的關(guān)系、直線與拋物線的較大坐標(biāo).相似三角形的判定與性質(zhì),題目較為綜合,有一定的難度,解決第二問(wèn)的關(guān)鍵是求得PB、AP的長(zhǎng),再利用相似三角形的性質(zhì)解決問(wèn)題.22、(1)作圖見(jiàn)解析;(2)1【解析】

(1)以點(diǎn)B為圓心,任意長(zhǎng)為半徑畫(huà)弧分別與AB、BC相交。然后再分別以交點(diǎn)為圓心,以交點(diǎn)間的距離為半徑分別畫(huà)弧,兩弧相交于一點(diǎn),畫(huà)出射線BE即得.(2)根據(jù)平行四邊形的對(duì)邊相等,可得AB+AD=5,由兩直線平行內(nèi)錯(cuò)角相等可得∠AEB=∠EBC,利用角平分線即得∠ABE=∠EBC,即證∠AEB=∠ABE.根據(jù)等角對(duì)等邊可得AB=AE=2,從而求出ED的長(zhǎng).【詳解】(1)解:如圖所示:(2)解:∵平行四邊形ABCD的周長(zhǎng)為10∴AB+AD=5∵AD//BC∴∠AE

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論