




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省太原志達中學2025屆九上數學期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.“圓材埋壁”是我國古代著名的數學著作《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長六寸,問徑幾何?”用現代的數學語言表述是:“CD為的直徑,弦,垂足為E,CE=1寸,AB=10寸,求直徑CD的長”,依題意得CD的長為()A.12寸 B.13寸 C.24寸 D.26寸2.已知二次函數的圖象(0≤x≤4)如圖,關于該函數在所給自變量的取值范圍內,下列說法正確的是()A.有最大值1.5,有最小值﹣2.5 B.有最大值2,有最小值1.5C.有最大值2,有最小值﹣2.5 D.有最大值2,無最小值3.如圖,△ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是()A.2 B. C. D.4.已知關于x的一元二次方程x2+2x﹣a=0有兩個相等的實數根,則a的值是()A.1 B.﹣1 C. D.5.點A(1,y1)、B(3,y2)是反比例函數y=圖象上的兩點,則y1、y2的大小關系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能確定6.已知圓內接正六邊形的邊長是1,則該圓的內接正三角形的面積為()A. B. C. D.7.拋物線與坐標軸的交點個數為()A.0 B.1 C.2 D.38.如圖,已知“人字梯”的5個踩檔把梯子等分成6份,從上往下的第二個踩檔與第三個踩檔的正中間處有一條60cm長的綁繩EF,tanα=,則“人字梯”的頂端離地面的高度AD是()A.144cm B.180cm C.240cm D.360cm9.已知點E在半徑為5的⊙O上運動,AB是⊙O的一條弦且AB=8,則使△ABE的面積為8的點E共有()個.A.1 B.2 C.3 D.410.如果兩個相似多邊形的面積之比為,那么它們的周長之比是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,四邊形ABCD內接于⊙O,F是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數為______度.12.學校門口的欄桿如圖所示,欄桿從水平位置BD繞O點旋轉到AC位置,已知AB⊥BD,CD⊥BD,垂足分別為B,D,AO=4m,AB=1.6m,CO=1m,則欄桿C端應下降的垂直距離CD為__________.13.如圖,在平面直角坐標系中,正方形ABCD的三個頂點A、B、D均在拋物線y=ax2﹣4ax+3(a<0)上.若點A是拋物線的頂點,點B是拋物線與y軸的交點,則AC長為_____.14.如圖,正五邊形內接于,為上一點,連接,則的度數為__________.15.如圖,在邊長為1的正方形網格中,.線段與線段存在一種變換關系,即其中一條線段繞著某點旋轉一個角度可以得到另一條線段,則這個旋轉中心的坐標為__________.16.如圖,在某一時刻,太陽光線與地面成的角,一只皮球在太陽光的照射下的投影長為,則皮球的直徑是______.17.如圖,在正方形中,以為邊作等邊,延長,分別交于點,連接、、與相交于點,給出下列結論:①;②;③;④,其中正確的是__________.18.同時拋擲兩枚質地均勻的硬幣,則兩枚硬幣全部正面向上的概率是.三、解答題(共66分)19.(10分)如圖,是的弦,于,交于,若,求的半徑.20.(6分)如圖,一次函數y=ax+b(a≠0)的圖象與反比例函數(k≠0)的圖象相交于A,B兩點,與x軸,y軸分別交于C,D兩點,tan∠DCO=,過點A作AE⊥x軸于點E,若點C是OE的中點,且點A的橫坐標為﹣1.,(1)求該反比例函數和一次函數的解析式;(2)連接ED,求△ADE的面積.21.(6分)解下列方程:(1)x2+2x﹣3=0;(2)x(x﹣4)=12﹣3x.22.(8分)某商店如果將進貨價為8元的商品按每件11元售出,每天可銷售211件.現在采取提高售價,減少售貨量的方法增加利潤,已知這種商品每漲價1.5元,其銷量減少11件.(1)若漲價x元,則每天的銷量為____________件(用含x的代數式表示);(2)要使每天獲得711元的利潤,請你幫忙確定售價.23.(8分)小紅想利用陽光下的影長測量學校旗桿AB的高度.如圖,他在某一時刻在地面上豎直立一個2米長的標桿CD,測得其影長DE=0.4米.(1)請在圖中畫出此時旗桿AB在陽光下的投影BF.(2)如果BF=1.6,求旗桿AB的高.24.(8分)如圖,是的直徑,點,是上兩點,且,連接,,過點作交延長線于點,垂足為.(1)求證:是的切線;(2)若,求的半徑.25.(10分)在平面直角坐標系中,拋物線:沿軸翻折得到拋物線.(1)求拋物線的頂點坐標;(2)橫、縱坐標都是整數的點叫做整點.①當時,求拋物線和圍成的封閉區域內(包括邊界)整點的個數;②如果拋物線C1和C2圍成的封閉區域內(包括邊界)恰有個整點,求m取值范圍.26.(10分)2019年,中央全面落實“穩房價”的長效管控機制,重慶房市較上一年大幅降溫,11月,LH地產共推出了大平層和小三居兩種房型共80套,其中大平層每套面積180平方米,單價1.8萬元/平方米,小三居每套面積120平方米,單價1.5萬元/平方米.(1)LH地產11月的銷售總額為18720萬元,問11月要推出多少套大平層房型?(2)2019年12月,中央經濟會議上重申“房子是拿來住的,不是拿來炒的”,重慶房市成功穩定并略有回落.為年底清盤促銷,LH地產調整營銷方案,12月推出兩種房型的總數量仍為80套,并將大平層的單價在原有基礎上每平方米下調萬元(m>0),將小三居的單價在原有基礎上每平方米下調萬元,這樣大平層的銷量較(1)中11月的銷量上漲了7m套,且推出的房屋全部售罄,結果12月的銷售總額恰好與(1)中I1月的銷售總額相等.求出m的值.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】連接AO,設直徑CD的長為寸,則半徑OA=OC=寸,然后利用垂徑定理得出AE,最后根據勾股定理進一步求解即可.【詳解】如圖,連接AO,設直徑CD的長為寸,則半徑OA=OC=寸,∵CD為的直徑,弦,垂足為E,AB=10寸,∴AE=BE=AB=5寸,根據勾股定理可知,在Rt△AOE中,,∴,解得:,∴,即CD長為26寸.【點睛】本題主要考查了垂徑定理與勾股定理的綜合運用,熟練掌握相關概念是解題關鍵.2、C【詳解】由圖像可知,當x=1時,y有最大值2;當x=4時,y有最小值-2.5.故選C.3、B【分析】連接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的長;由BD平分∠ABC,OB=OD可得OD與BC間的位置關系,根據平行線分線段成比例定理,得結論.【詳解】連接OD∵OD是⊙O的半徑,AC是⊙O的切線,點D是切點,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴,即,∴CD=.故選B.【點睛】本題考查了圓的切線的性質、含30°角的直角三角形的性質及平行線分線段成比例定理,解決本題亦可說明∠C=90°,利用∠A=30°,AB=6,先得AC的長,再求CD.遇切點連圓心得直角,是通常添加的輔助線.4、B【分析】根據關于x的一元二次方程x2+2x﹣a=0有兩個相等的實數根可知△=0,求出a的取值即可.【詳解】解:∵關于x的一元二次方程x2+2x﹣a=0有兩個相等的實數根,∴△=22+4a=0,解得a=﹣1.故選B.【點睛】本題考查一元二次方程根的判別式,熟記公式正確計算是本題的解題關鍵.5、A【解析】∵反比例函數y=中的9>0,∴經過第一、三象限,且在每一象限內y隨x的增大而減小,又∵A(1,y?)、B(3,y?)都位于第一象限,且1<3,∴y?>y?,故選A.6、C【分析】根據圓內接正六邊形的邊長是1可得出圓的半徑為1,利用勾股定理可求出該內接正三角形的邊長為,高為,從而可得出面積.【詳解】解:由題意可得出圓的半徑為1,∵△ABC為正三角形,AO=1,,BD=CD,AO=BO,∴,,∴,∴,∴.故選:C.【點睛】本題考查的知識點是正多邊形的性質以及解直角三角形,根據圓內接正多邊形的邊長求出圓的半徑是解此題的關鍵.7、C【分析】先計算自變量為0對應的函數值得到拋物線與軸的交點坐標,再解方程得拋物線與軸的交點坐標,從而可對各選項進行判斷.【詳解】當時,,則拋物線與軸的交點坐標為,當時,,解得,拋物線與軸的交點坐標為,所以拋物線與坐標軸有2個交點.故選C.【點睛】本題考查了拋物線與軸的交點:把求二次函數是常數,與軸的交點坐標問題轉化為解關于的一元二次方程.8、B【解析】試題分析:解:如圖:根據題意可知::△AFO∽△ABD,OF=EF=30cm∴,∴∴CD=72cm,∵tanα=∴∴AD==180cm.故選B.考點:解直角三角形的應用.9、C【分析】根據△ABC的面積可將高求出,即⊙O上的點到AB的距離為高長的點都符合題意.【詳解】過圓心向弦AB作垂線,再連接半徑.設△ABE的高為h,由可求.由圓的對稱性可知,有兩個點符合要求;又弦心距=.∵3+2=5,故將弦心距AB延長與⊙O相交,交點也符合要求,故符合要求的點有3個.故選C.考點:(1)垂徑定理;(2)勾股定理.10、A【分析】根據相似多邊形周長的比等于相似比,面積的比等于相似比的平方進行解答即可.【詳解】解:∵兩個相似多邊形面積的比為,
∴兩個相似多邊形周長的比等于,
∴這兩個相似多邊形周長的比是.
故選:A.【點睛】本題考查的是相似多邊形的性質,即相似多邊形周長的比等于相似比,面積的比等于相似比的平方.二、填空題(每小題3分,共24分)11、1【分析】根據圓內接四邊形的性質求出∠ADC的度數,由圓周角定理得出∠DCE的度數,根據三角形外角的性質即可得出結論.【詳解】∵四邊形ABCD內接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°,∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=1°,故答案為:1.【點睛】本題考查了圓內接四邊形的問題,掌握圓內接四邊形的性質、圓周角定理、三角形外角的性質是解題的關鍵.12、0.4m【分析】先證明△OAB∽△OCD,再根據相似三角形的對應邊成比例列方程求解即可.【詳解】∵AB⊥BD,CD⊥BD,∴∠ABO=∠CDO.∵∠AOB=∠COD,∴△OAB∽△OCD,∴AO:CO=AB:CD,∴4:1=1.6:CD,∴CD=0.4.故答案為0.4.【點睛】本題主要考查了相似三角形的應用,正確地把實際問題轉化為相似三角形問題,利用相似三角形的判定與性質解決是解題的關鍵.13、1.【解析】試題解析:拋物線的對稱軸x=-=2,點B坐標(0,3),∵四邊形ABCD是正方形,點A是拋物線頂點,∴B、D關于對稱軸對稱,AC=BD,∴點D坐標(1,3)∴AC=BD=1.考點:1.正方形的性質;2.二次函數的性質.14、【分析】連接OA,OE.根據正五邊形求出∠AOE的度數,再根據圓的有關性質即可解答【詳解】如圖,連接OA,OE.∵ABCDE是正五邊形,∴∠AOE==72°,∴∠APE=∠AOE=36°【點睛】本題考查了正多邊形和圓的有關性質,解題的關鍵是熟練掌握想關性質并且靈活運用題目的已知條件.15、或【分析】根據旋轉后的對應關系分類討論,分別畫出對應的圖形,作出對應點連線的垂直平分線即可找到旋轉中心,最后根據點A的坐標即可求結論.【詳解】解:①若旋轉后點A的對應點是點C,點B的對稱點是點D,連接AC和BD,分別作AC和BD的垂直平分線,兩個垂直平分線交于點O,根據垂直平分線的性質可得OA=OC,OB=OD,故點O即為所求,∵,∴由圖可知:點O的坐標為(5,2);②若旋轉后點A的對應點是點D,點B的對稱點是點C,連接AD和BC,分別作AD和BC的垂直平分線,兩個垂直平分線交于點O,根據垂直平分線的性質可得OA=OD,OB=OC,故點O即為所求,∵,∴由圖可知:點O的坐標為綜上:這個旋轉中心的坐標為或故答案為:或.【點睛】此題考查的是根據旋轉圖形找旋轉中心,掌握垂直平分線的性質及作法是解決此題的關鍵.16、15【分析】由圖可得AC即為投影長,過點A作于點B,由光線平行這一性質可得,且AB即為圓的半徑,利用三角函數可得AB長.【詳解】解:如圖,過點A作于點B,由光線平行這一性質可得,且AB即為圓的半徑,AC即為投影長.在中,,所以皮球的直徑是15cm.故答案為:15.【點睛】本題考查了三角函數的應用,由圖確定圓的投影長及直徑是解題的關鍵.17、①②③④【分析】①正確.利用直角三角形30度角的性質即可解決問題;②正確,通過計算證明∠BPD=135°,即可判斷;③正確,根據兩角相等兩個三角形相似即可判斷;④正確.利用相似三角形的性質即可證明.【詳解】∵△BPC是等邊三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ABC=∠ADC=∠BCD=90°,
∴∠ABE=∠DCF=90°-60°=30°,在和中,,∴,∴,∴在中,∠A=90°,∠ABE=30°,∴,故①正確;∵PC=CD,∠PCD=30°,
∴∠PDC=∠DPC=75°,∴∠BPD=∠BPC+∠DPC=60°+75°=135°,故②正確;∵∠ADC=90°,∠PDC=75°,
∴∠EDP=∠ADC-∠PDC=90°-75°=15°,
∵∠DBA=45°,∠ABE=30°,
∴∠EBD=∠DBA-∠ABE=45°-30°=15°,
∴∠EDP=∠EBD=15°,
∵∠DEP=∠BED,
∴△PDE∽△DBE,故③正確;∵△PDE∽△DBE,∴,∴,故④正確;綜上,①②③④都正確,故答案為:①②③④.【點睛】本題考查相似三角形的判定和性質,等邊三角形的性質,正方形的性質,直角三角形30度角的性質等知識,解題的關鍵是熟練掌握基本知識.18、.【解析】試題分析:畫樹狀圖為:共有4種等可能的結果數,其中兩枚硬幣全部正面向上的結果數為1,所以兩枚硬幣全部正面向上的概率=.故答案為.考點:列表法與樹狀圖法.三、解答題(共66分)19、5.【分析】連接OB,由垂徑定理得BE=CE=4,在中,根據勾股定理列方程求解.【詳解】解:連接設的半徑為,則在中,由勾股定理得,即解得的半徑為【點睛】本題考查了圓的垂徑定理,利用勾股定理列方程求解是解答此題的關鍵.20、(1)y=﹣x﹣3,y=﹣;(2)S△ADE=2.【分析】(1)根據題意求得OE=1,OC=2,Rt△COD中,tan∠DCO=,OD=3,即可得到A(-1,3),D(0,-3),C(-2,0),運用待定系數法即可求得反比例函數與一次函數的解析式;
(2)求得兩個三角形的面積,然后根據S△ADE=S△ACE+S△DCE即可求得.【詳解】(1)∵AE⊥x軸于點E,點C是OE的中點,且點A的橫坐標為﹣1,∴OE=1,OC=2,∵Rt△COD中,tan∠DCO=,∴OD=3,∴A(﹣1,3),∴D(0,﹣3),C(﹣2,0),∵直線y=ax+b(a≠0)與x軸、y軸分別交于C、D兩點,∴,解得,∴一次函數的解析式為y=﹣x﹣3,把點A的坐標(﹣1,3)代入,可得3=,解得k=﹣12,∴反比例函數解析式為y=﹣;(2)S△ADE=S△ACE+S△DCE=EC?AE+EC?OD=×2×3+=2.21、(1)x=﹣1或x=1;(2)x=4或x=﹣1.【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【詳解】解:(1)∵x2+2x﹣1=0,∴(x+1)(x﹣1)=0,則x+1=0或x﹣1=0,解得x=﹣1或x=1;(2)∵x(x﹣4)+1(x﹣4)=0,∴(x﹣4)(x+1)=0,則x﹣4=0或x+1=0,解得x=4或x=﹣1.【點睛】本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.22、(1)211-21x;(2)12元.【解析】試題分析:(1)如果設每件商品提高x元,即可用x表示出每天的銷售量;(2)根據總利潤=單價利潤×銷售量列出關于x的方程,進而求出未知數的值.試題解析:解:(1)211-21x;(2)根據題意,得(11-8+x)(211-21x)=711,整理得x2-8x+12=1,解得x1=2,x2=3,因為要采取提高售價,減少售貨量的方法增加利潤,所以取x=2.所以售價為11+2=12(元),答:售價為12元.點睛:此題考查了一元二次方程在實際生活中的應用.解題的關鍵是理解題意,找到等量關系,列出方程.23、(1)見解析(2)8m【詳解】試題分析:(1)利用太陽光線為平行光線作圖:連結CE,過A點作AF∥CE交BD于F,則BF為所求;(2)證明△ABF∽△CDE,然后利用相似比計算AB的長.試題解析:(1)連結CE,過A點作AF∥CE交BD于F,則BF為所求,如圖;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴,即,∴AB=8(m),答:旗桿AB的高為8m.24、(1)見解析;(2)圓O的半徑為1【分析】(1)連結OC,由根據圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根據切線的判定定理得到CD是⊙O的切線;(2)連結BC,由AB為直徑得∠ACB=90°,由得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三邊的關系得,在Rt△ACB中,利用含30度的直角三角形三邊的關系得AB=2BC=1,從而求出⊙O的半徑.【詳解】解:(1)證明:連結OC,如圖∵弧FC=弧BC∴∠FAC=∠BAC,∵OA=OC,∴∠OAC=∠OCA,∴∠FAC=∠OCA,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 港口城市規劃和發展考核試卷
- 砼構件預制件生產質量控制考核試卷
- 礦山法律法規解讀考核試卷
- 包裝設備的虛擬現實培訓考核試卷
- 漁業機械的設計優化與生產效率提升考核試卷
- 電機在農業植保機械的應用考核試卷
- 皮革服裝設計中的功能性產品開發考核試卷
- 木結構建筑的日照與采光分析考核試卷
- 海水養殖智能化與自動化技術考核試卷
- 木片在環保型涂料的開發與性能評估考核試卷
- 上市公司固定資產減值研究 -以美的集團股份有限公司為例
- DB14T+2779-2023營造林工程監理規范
- 運動會運營服務投標方案(技術標 )
- 雷達原理(第6版) 習題及答案匯總 丁鷺飛 ch01-ch09
- 完整版供應商質量審核檢查評分表(供應商審核表)
- 公司接待流程圖
- 常用急救技術-環甲膜穿刺、切開術(急救技術課件)
- 新團員入團儀式PPT模板
- 鐵粒幼細胞貧血教學課件
- 土木工程畢業設計計算書(含建筑設計+結構設計+設計圖紙)
- 02jrc901b電子海圖操作jan中文說明書
評論
0/150
提交評論