




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北宇華教育集團2025屆九年級數學第一學期期末學業質量監測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每題4分,共48分)1.如圖一塊直角三角形ABC,∠B=90°,AB=3,BC=4,截得兩個正方形DEFG,BHJN,設S1=DEFG的面積,S2=BHJN的面積,則S1、S2的大小關系是()A.S1>S2 B.S1<S2 C.S1=S2 D.不能確定2.如圖,已知的周長等于,則它的內接正六邊形ABCDEF的面積是()A. B. C. D.3.若反比例函數y=的圖象經過點(3,1),則它的圖象也一定經過的點是()A.(﹣3,1) B.(3,﹣1) C.(1,﹣3) D.(﹣1,﹣3)4.如圖,正方形的邊長為,對角線相交于點,將直角三角板的直角頂點放在點處,兩直角邊分別與重疊,當三角板繞點順時針旋轉角時,兩直角邊與正方形的邊交于兩點,則四邊形的周長()A.先變小再變大 B.先變大再變小C.始終不變 D.無法確定5.如圖,在△ABC中,AB=AC,D、E、F分別是邊AB、AC、BC的中點,若CE=2,則四邊形ADFE的周長為()A.2 B.4 C.6 D.86.如圖,分別是的邊上的點,且,相交于點,若,則的值為()A. B. C. D.7.在雙曲線的每一分支上,y都隨x的增大而增大,則k的值可以是()A.2 B.3 C.0 D.18.反比例函數(x<0)如圖所示,則矩形OAPB的面積是()A.-4 B.-2 C.2 D.49.有三張正面分別標有數字-2,3,4的不透明卡片,它們除數字不同外,其余全部相同,現將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數字之積為正偶數的概率是()A. B. C. D.10.某個幾何體的三視圖如圖所示,該幾何體是()A. B. C. D.11.如圖,一個可以自由轉動的轉盤,被分成了6個相同的扇形,轉動轉盤,轉盤停止時,指針落在白色區域的概率等于()A. B. C. D.無法確定12.如圖,在Rt△ABC中,∠ACB=90°,若,BC=2,則sin∠A的值為()A. B. C. D.二、填空題(每題4分,共24分)13.點(﹣4,3)關于原點對稱的點的坐標是_____.14.有五張分別印有等邊三角形、正方形、正五邊形、矩形、正六邊形圖案的卡片(這些卡片除圖案不同外,其余均相同).現將有圖案的一面朝下任意擺放,從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為_____.15.邊心距是的正六邊形的面積為___________.16.已知拋物線y=x2﹣x﹣1與x軸的一個交點為(m,0),則代數式m2﹣m+5=_____.17.如圖,在中,,點D、E分別在邊、上,且,如果,,那么________.18.若<2,化簡_____________三、解答題(共78分)19.(8分)如圖1,AD、BD分別是△ABC的內角∠BAC、∠ABC的平分線,過點A作AE⊥AD,交BD的延長線于點E.(1)求證:∠E=∠C;(2)如圖2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;(3)如果∠ABC是銳角,且△ABC與△ADE相似,求∠ABC的度數.20.(8分)根據要求畫出下列立體圖形的視圖.21.(8分)解方程:x2-7x-18=0.22.(10分)如圖1,矩形ABCD中,AD=2,AB=3,點E,F分別在邊AB,BC上,且BF=FC,連接DE,EF,并以DE,EF為邊作?DEFG.(1)連接DF,求DF的長度;(2)求?DEFG周長的最小值;(3)當?DEFG為正方形時(如圖2),連接BG,分別交EF,CD于點P、Q,求BP:QG的值.23.(10分)在中,分別是的中點,連接求證:四邊形是矩形;請用無刻度的直尺在圖中作出的平分線(保留作圖痕跡,不寫作法).24.(10分)用適當的方法解下列一元二次方程:(1);(2).25.(12分)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C.(1)求證:PB是⊙O的切線;(2)連接OP,若OP∥BC,且OP=4,⊙O的半徑為,求BC的長.26.某班“數學興趣小組”對函數的圖象和性質進行了探究,探究過程如下,請補充完整.(1)自變量的取值范圍是全體實數,與的幾組對應值列表如下:其中,.……0123…………3003……(2)根據表中數據,在如圖所示的平面直角坐標系中描點,已畫出了函數圖象的一部分,請畫出該函數圖象的另一部分;(3)觀察函數圖象,寫出一條函數的性質:;(4)觀察函數圖象發現:若關于的方程有4個實數根,則的取值范圍是.
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據勾股定理求出AC,求出AC邊上的高BM,根據相似三角形的性質得出方程,求出方程的解,即可求得S1,如圖2,根據相似三角形的性質列方程求得HJ=,于是得到S2=()2>()2,即可得到結論.【詳解】解:如圖1,設正方形DEFG的邊長是x,∵△ABC是直角三角形,∠B=90°,AB=3,BC=4,∴由勾股定理得:AC=5,過B作BM⊥AC于M,交DE于N,由三角形面積公式得:BC×AB=AC×BM,∵AB=3,AC=5,BC=4,∴BM=2.4,∵四邊形DEFG是正方形,∴DG=GF=EF=DE=MN=x,DE∥AC,∴△BDE∽△ABC,∴=,∴=,∴x=,即正方形DEFG的邊長是;∴S1=()2,如圖2,∵HJ∥BC,∴△AHJ∽△ABC,∴=,即=,∴HJ=,∴S2=()2>()2,∴S1<S2,故選:B.【點睛】本題考查了相似三角形的性質和判定,三角形面積公式,正方形的性質的應用,熟練掌握相似三角形的判定和性質是解題的關鍵.2、C【分析】過點O作OH⊥AB于點H,連接OA,OB,由⊙O的周長等于6πcm,可得⊙O的半徑,又由圓的內接多邊形的性質可得∠AOB=60°,即可證明△AOB是等邊三角形,根據等邊三角形的性質可求出OH的長,根據S正六邊形ABCDEF=6S△OAB即可得出答案.【詳解】過點O作OH⊥AB于點H,連接OA,OB,設⊙O的半徑為r,∵⊙O的周長等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半徑為3cm,即OA=3cm,∵六邊形ABCDEF是正六邊形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等邊三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六邊形ABCDEF=6S△OAB=6××3×=(cm2).故選C.【點睛】此題考查了正多邊形與圓的性質.此題難度適中,注意掌握數形結合思想的應用.3、D【分析】由反比例函數y=的圖象經過點(3,1),可求反比例函數解析式,把點代入解析式即可求解.【詳解】∵反比例函數y=的圖象經過點(3,1),∴y=,把點一一代入,發現只有(﹣1,﹣3)符合.故選D.【點睛】本題運用了待定系數法求反比例函數解析式的知識點,然后判斷點是否在反比例函數的圖象上.4、A【分析】由四邊形ABCD是正方形,直角∠FOE,證明△DOF≌△COE,則可得四邊形OECF的周長與OE的變化有關.【詳解】解:四邊形是正方形,,,即,又,隨的變化而變化。由旋轉可知先變小再變大,故選:.【點睛】本題考查了用正方形的性質來證明三角形全等,再利用相等線段進行變形,根據變化的線段來判定四邊形OECF周長的變化.5、D【分析】根據三角形的中點的概念求出AB、AC,根據三角形中位線定理求出DF、EF,計算得到答案.【詳解】解:∵點E是AC的中點,AB=AC,∴AB=AC=4,∵D是邊AB的中點,∴AD=2,∵D、F分別是邊、AB、BC的中點,∴DF=AC=2,同理,EF=2,∴四邊形ADFE的周長=AD+DF+FE+EA=8,故選:D.【點睛】本題考查的是三角形中位線定理,三角形的中位線平行于第三邊,且等于第三邊的一半.6、C【分析】根據題意可證明,再利用相似三角形的性質,相似三角形面積的比等于相似比的平方,即可得出對應邊的比值.【詳解】解:∵∴∴根據相似三角形面積的比等于相似比的平方,可知對應邊的比為.故選:C.【點睛】本題考查的知識點是相似三角形的性質,主要有①相似三角形周長的比等于相似比;②相似三角形面積的比等于相似比的平方;③相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.7、C【分析】根據反比例函數的性質:當k-1<0時,在每一個象限內,函數值y隨著自變量x的增大而增大作答.【詳解】∵在雙曲線的每一條分支上,y都隨x的增大而增大,∴k-1<0,∴k<1,故選:C.【點睛】本題考查了反比例函數的性質.對于反比例函數,當k>0時,在每一個象限內,函數值y隨自變量x的增大而減小;當k<0時,在每一個象限內,函數值y隨自變量x增大而增大.8、D【分析】根據反比例函數的比例系數的幾何意義:反比例函數圖象上一點向x軸,y軸作垂線與坐標軸圍成的矩形面積等于|k|解答即可.【詳解】∵點P在反比例函數(x<0)的圖象上,∴S矩形OAPB=|-4|=4,故選:D.【點睛】本題主要考查反比例函數的比例系數的幾何意義,掌握反比例函數上一點向x軸,y軸作垂線與坐標軸圍成的矩形面積等于|k|是關鍵.9、C【詳解】畫樹狀圖得:
∵共有6種等可能的結果,兩次抽取的卡片上的數字之積為正偶數的有2種情況,
∴兩次抽取的卡片上的數字之積為正偶數的概率是:.故選C.【點睛】本題考查運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.10、D【解析】根據幾何體的三視圖判斷即可.【詳解】由三視圖可知:該幾何體為圓錐.故選D.【點睛】考查了由三視圖判斷幾何體的知識,解題的關鍵是具有較強的空間想象能力,難度不大.11、C【分析】根據概率P(A)=事件A可能出現的結果數:所有可能出現的結果數可得答案.【詳解】以自由轉動的轉盤,被分成了6個相同的扇形,白色區域有4個,因此=,故選:C.【點睛】此題主要考查概率的求解,解題的關鍵是熟知幾何概率的求解方法.12、C【分析】先利用勾股定理求出AB的長,然后再求sin∠A的大小.【詳解】解:∵在Rt△ABC中,,BC=2∴AB=∴sin∠A=故選:C.【點睛】本題考查銳角三角形的三角函數和勾股定理,需要注意求三角函數時,一定要是在直角三角形當中.二、填空題(每題4分,共24分)13、(4,﹣3)【解析】平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(﹣x,﹣y),即關于原點的對稱點,橫縱坐標都變成相反數.【詳解】點(﹣4,3)關于原點對稱的點的坐標是(4,﹣3).故答案為(4,﹣3).【點睛】本題考查了平面直角坐標系中任意一點P(x,y),關于原點的對稱點是(﹣x,﹣y),即關于原點的對稱點,橫縱坐標都變成相反數,比較簡單.14、【解析】判斷出即是中心對稱,又是軸對稱圖形的個數,然后結合概率計算公式,計算,即可.【詳解】解:等邊三角形、正方形、正五邊形、矩形、正六邊形圖案中既是中心對稱圖形,又是軸對稱圖形是:正方形、矩形、正六邊形共3種,故從中任意抽取一張,抽到卡片的圖案既是中心對稱圖形,又是軸對稱圖形的概率為:.故答案為.【點睛】考查中心對稱圖形和軸對稱圖形的判定,考查概率計算公式,難度中等.15、【分析】根據題意畫出圖形,先求出∠AOB的度數,證明△AOB是等邊三角形,得出AB=OA,再根據直角三角形的性質求出OA的長,再根據S六邊形=6S△AOB即可得出結論.【詳解】解:∵圖中是正六邊形,∴∠AOB=60°.∵OA=OB,∴△OAB是等邊三角形.∴OA=OB=AB,∵OD⊥AB,OD=,∴OA=∴AB=4,∴S△AOB=AB×OD=×2×=,∴正六邊形的面積=6S△AOB=6×=6.故答案為:6.【點睛】本題考查的是正多邊形和圓,熟知正六邊形的性質并求出△AOB的面積是解答此題的關鍵.16、1【分析】利用拋物線與x軸的交點問題得到m2﹣m﹣1=0,則m2﹣m=1,然后利用整體代入的方法計算m2﹣m+5的值.【詳解】∵拋物線y=x2﹣x﹣1與x軸的一個交點為(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=1.故答案為:1.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(是常數,)與軸的交點坐標問題轉化為解關于的一元二次方程.17、【分析】根據,,得出,利用相似三角形的性質解答即可.【詳解】∵,,∴,∴,即,∴,∵,∴,故答案為【點睛】本題考查了相似三角形的判定與性質.關鍵是要懂得找相似三角形,利用相似三角形的性質求解.18、2-x.【分析】直接利用二次根式的性質化簡求出答案.【詳解】解:∵x<2,∴x-2<0,故答案是:2-x.【點睛】此題主要考查了二次根式的性質與化簡,正確把握二次根式的性質是解題關鍵.三、解答題(共78分)19、(1)證明見詳解;(2);(3)30°或45°.【分析】(1)由題意:∠E=90°-∠ADE,證明∠ADE=90°-∠C即可解決問題.(2)延長AD交BC于點F.證明AE∥BC,可得∠AFB=∠EAD=90°,,由BD:DE=2:3,可得cos∠ABC=;(3)因為△ABC與△ADE相似,∠DAE=90°,所以∠ABC中必有一個內角為90°因為∠ABC是銳角,推出∠ABC≠90°.接下來分兩種情形分別求解即可.【詳解】(1)證明:如圖1中,∵AE⊥AD,∴∠DAE=90°,∠E=90°-∠ADE,∵AD平分∠BAC,∴∠BAD=∠BAC,同理∠ABD=∠ABC,∵∠ADE=∠BAD+∠DBA,∠BAC+∠ABC=180°-∠C,∴∠ADE=(∠ABC+∠BAC)=90°-∠C,∴∠E=90°-(90°-∠C)=∠C.(2)解:延長AD交BC于點F.∵AB=AE,∴∠ABE=∠E,BE平分∠ABC,∴∠ABE=∠EBC,∴∠E=∠CBE,∴AE∥BC,∴∠AFB=∠EAD=90°,,∵BD:DE=2:3,∴cos∠ABC=;(3)∵△ABC與△ADE相似,∠DAE=90°,∴∠ABC中必有一個內角為90°∵∠ABC是銳角,∴∠ABC≠90°.①當∠BAC=∠DAE=90°時,∵∠E=∠C,∴∠ABC=∠E=∠C,∵∠ABC+∠C=90°,∴∠ABC=30°;②當∠C=∠DAE=90°時,∠E=∠C=45°,∴∠EDA=45°,∵△ABC與△ADE相似,∴∠ABC=45°;綜上所述,∠ABC=30°或45°.【點睛】本題屬于相似形綜合題,考查相似三角形的判定和性質,平行線的判定和性質,銳角三角函數等知識,解題的關鍵是學會用分類討論的思想思考問題.20、答案見解析.【分析】根據主視圖是從正面看到的圖形,左視圖是從左面看到的圖形,俯視圖是從上面看到的圖形,即可得到結果.【詳解】解:如圖所示:【點睛】本題考查幾何體的三視圖,作圖能力是學生必須具備的基本能力,因為此類問題在中考中比較常見,一般以選擇題、填空題形式出現,屬于基礎題,難度不大.21、【分析】利用因式分解法求解即可.【詳解】因式分解,得于是得或故原方程的解為:.【點睛】本題考查了一元二次方程的解法,其主要解法包括:直接開方法、配方法、公式法、因式分解法(十字相乘法)等,熟記各解法是解題關鍵.22、(1);(2)6;(3)或.【分析】(1)平行四邊形DEFG對角線DF的長就是Rt△DCF的斜邊的長,由勾股定理求解;(2)平行四邊形DEFG周長的最小值就是求鄰邊2(DE+EF)最小值,DE+EF的最小值就是以AB為對稱軸,作點F的對稱點M,連接DM交AB于點N,點E與N點重合時即DE+EF=DM時有最小值,在Rt△DMC中由勾股定理求DM的長;(3)平行四邊形DEFG為矩形時有兩種情況,一是一般矩形,二是正方形,分類用全等三角形判定與性質,等腰直角三角形判定與性質,三角形相似的判定與性質和勾股定理求解.【詳解】解:(1)如圖1所示:∵四邊形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;(2)如圖2所示:作點F關直線AB的對稱點M,連接DM交AB于點N,連接NF,ME,點E在AB上是一個動點,①當點E不與點N重合時點M、E、D可構成一個三角形,∴ME+DE>MD,②當點E與點N重合時點M、E(N)、D在同一條直線上,∴ME+DE=MD由①和②DE+EF的值最小時就是點E與點N重合時,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD===3,∴NF+DN=MD=3,∴l平行四邊形DEFG=2(NF+DF)=6;(3)設AE=x,則BE=3﹣x,∵平行四邊形DEFG為矩形,∴∠DEF=90°,∵∠AED+∠BEF=90°,∠BEF+∠BFE=90°,∴∠AED=∠BFE,又∵∠A=∠EBF=90°,∴△DAE∽△EBF,∴=,∴=,解得:x=1,或x=2①當AE=1,BE=2時,過點B作BH⊥EF,如圖3(甲)所示:∵平行四邊形DEFG為矩形,∴∠A=∠ABF=90°,又∵BF=1,AD=2,∴在△ADE和△BEF中,,∴△ADE≌△BEF中(SAS),∴DE=EF,∴矩形DEFG是正方形;在Rt△EBF中,由勾股定理得:EF===,∴BH==,又∵△BEF~△HBF,∴=,HF===,在△BPH和△GPF中有:∠BPH=∠GPF,∠BHP=∠GFP,∴△BPH∽△GPF,∴===,∴PF=?HF=,又∵EP+PF=EF,∴EP=﹣=,又∵AB∥BC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴===,②當AE=2,BE=1時,過點G作GH⊥DC,如圖3(乙)所示:∵?DEFG為矩形,∴∠A=∠EBF=90°,∵AD=AE=2,BE=BF=1,∴在Rt△ADE和Rt△EFB中,由勾股定理得:∴ED==2,EF===,∴∠ADE=45°,又∵四邊形DEFG是矩形,∴EF=DG,∠EDG=90°,∴DG=,∠HDG=45°,∴△DHG是等腰直角三角形,∴DH=HG=1,在△HGQ和△BCQ中有,∠GHQ=∠BCQ,∠HQG=∠CQB,∴△HGQ∽△BCQ,∴==,∵HC=HQ+CQ=2,∴HQ=,又∵DQ=DH+HQ,∴DQ=1+=,∵AB∥DC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴=,綜合所述,BP:QG的值為或.【點睛】本題考查了矩形的性質,軸對稱的性質,全等三角形的判定與性質,相似三角形的判定與性質,等腰三角形的判定與性質;重點掌握相似三角形的判定與性質,難點是作輔助線和分類求值.23、(1)證明見解析;(2)作圖見解析.【解析】首先證明四邊形是平行四邊形,再根據有一個角是直角的平行四邊形是矩形即可判斷.連接交于點,作射線即可.【詳解】證明:分別是的中點,四邊形是平行四邊形,四邊形是矩形連接交于點,作射線,射線即為所求.【點睛】本題考查三角形中位線定理,矩形的判定和性質,等邊三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識.24、(1);(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 助理廣告師考試消費市場趨勢分析試題及答案
- 太原社區面試題及答案
- 全科醫學試題及答案詳解
- 地理西亞測試題及答案
- 2024年國際商業設計師考試備考要點試題及答案
- 助理廣告師考試數據分析基礎試題及答案
- c語言測試試題及答案
- 商業設計師考試全新試題及答案揭曉
- 2024年職稱考試紡織品檢驗問答試題及答案
- 破解國際商業美術設計師考試難題試題及答案
- 一份完整的冠心病病歷
- 耳與臟腑經絡的關系演示文稿
- 初中生金融與理財知識小課堂-認識和使用金錢
- 德國的介紹圖文課件
- 最新中建CI報價單-2013
- (完整版)爾雅課程-創新創業領導力課后習題答案
- 兒童換牙期健康課件
- 2021-2022學年浙江省“9 1”高中聯盟高一年級下冊學期期中數學試題【含答案】
- 盤扣支模架工程監理細則
- 崇尚科學反邪教主題教育PPT反對邪教主題教育宣講課件
- smt首件檢驗記錄表
評論
0/150
提交評論