




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省濱海縣市級名校中考數學模擬精編試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.有五名射擊運動員,教練為了分析他們成績的波動程度,應選擇下列統計量中的()A.方差 B.中位數 C.眾數 D.平均數2.如圖,△ADE繞正方形ABCD的頂點A順時針旋轉90°,得△ABF,連接EF交AB于H,有如下五個結論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結論有()A.2個 B.3個 C.4個 D.5個3.從一個邊長為3cm的大立方體挖去一個邊長為1cm的小立方體,得到的幾何體如圖所示,則該幾何體的左視圖正確的是()A. B. C. D.4.如圖,若干個全等的正五邊形排成環狀,圖中所示的是前3個正五邊形,要完成這一圓環還需正五邊形的個數為()A.10 B.9 C.8 D.75.二次函數的圖像如圖所示,下列結論正確是()A. B. C. D.有兩個不相等的實數根6.一次函數的圖像不經過的象限是:()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.計算2a2+3a2的結果是()A.5a4 B.6a2 C.6a4 D.5a28.據統計,某住宅樓30戶居民五月份最后一周每天實行垃圾分類的戶數依次是:27,30,29,25,26,28,29,那么這組數據的中位數和眾數分別是()A.25和30 B.25和29 C.28和30 D.28和299.下列長度的三條線段能組成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,410.如圖,反比例函數(x>0)的圖象經過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為()A.1 B.2 C.3 D.4二、填空題(共7小題,每小題3分,滿分21分)11.拋物線y=3x2﹣6x+a與x軸只有一個公共點,則a的值為_____.12.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.13.如圖,已知AB∥CD,F為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數為整數,則∠C的度數為_____.14.如圖,在平面直角坐標系xOy中,四邊形OABC是正方形,點C(0,4),D是OA中點,將△CDO以C為旋轉中心逆時針旋轉90°后,再將得到的三角形平移,使點C與點O重合,寫出此時點D的對應點的坐標:_____.15.已知點A(2,0),B(0,2),C(-1,m)在同一條直線上,則m的值為___________.16.如圖,圓錐底面半徑為rcm,母線長為10cm,其側面展開圖是圓心角為216°的扇形,則r的值為.17.若y=,則x+y=.三、解答題(共7小題,滿分69分)18.(10分)如圖,平面直角坐標系中,直線AB:交y軸于點A(0,1),交x軸于點B.直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,且在點D的上方,設P(1,n).求直線AB的解析式和點B的坐標;求△ABP的面積(用含n的代數式表示);當S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標.19.(5分)已知直線y=mx+n(m≠0,且m,n為常數)與雙曲線y=(k<0)在第一象限交于A,B兩點,C,D是該雙曲線另一支上兩點,且A、B、C、D四點按順時針順序排列.(1)如圖,若m=﹣,n=,點B的縱坐標為,①求k的值;②作線段CD,使CD∥AB且CD=AB,并簡述作法;(2)若四邊形ABCD為矩形,A的坐標為(1,5),①求m,n的值;②點P(a,b)是雙曲線y=第一象限上一動點,當S△APC≥24時,則a的取值范圍是.20.(8分)如圖,已知CD=CF,∠A=∠E=∠DCF=90°,求證:AD+EF=AE21.(10分)如圖,已知D是AC上一點,AB=DA,DE∥AB,∠B=∠DAE.求證:BC=AE.22.(10分)如圖,△ABC中,D是BC上的一點,若AB=10,BD=6,AD=8,AC=17,求△ABC的面積.23.(12分)某工程隊承擔了修建長30米地下通道的任務,由于工作需要,實際施工時每周比原計劃多修1米,結果比原計劃提前1周完成.求該工程隊原計劃每周修建多少米?24.(14分)如圖,在平面直角坐標系中,直線y=x+2與坐標軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標為(1,0),拋物線y=ax2+bx+c經過點A、B、C.(1)求該拋物線的解析式;(2)根據圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當PQ=時,求P點坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:方差是用來衡量一組數據波動大小的量,體現數據的穩定性,集中程度;方差越大,即波動越大,數據越不穩定;反之,方差越小,數據越穩定.故教練要分析射擊運動員成績的波動程度,只需要知道訓練成績的方差即可.故選A.考點:1、計算器-平均數,2、中位數,3、眾數,4、方差2、C【解析】
由旋轉性質得到△AFB≌△AED,再根據相似三角對應邊的比等于相似比,即可分別求得各選項正確與否.【詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項⑤正確.故選:C【點睛】本題主要考查了正方形的性質、等腰直角三角形的性質、全等三角形的判定和性質等知識,熟練地應用旋轉的性質以及相似三角形的性質是解決問題的關鍵.3、C【解析】
左視圖就是從物體的左邊往右邊看.小正方形應該在右上角,故B錯誤,看不到的線要用虛線,故A錯誤,大立方體的邊長為3cm,挖去的小立方體邊長為1cm,所以小正方形的邊長應該是大正方形,故D錯誤,所以C正確.故此題選C.4、D【解析】分析:先根據多邊形的內角和公式(n﹣2)?180°求出正五邊形的每一個內角的度數,再延長五邊形的兩邊相交于一點,并根據四邊形的內角和求出這個角的度數,然后根據周角等于360°求出完成這一圓環需要的正五邊形的個數,然后減去3即可得解.詳解:∵五邊形的內角和為(5﹣2)?180°=540°,∴正五邊形的每一個內角為540°÷5=18°,如圖,延長正五邊形的兩邊相交于點O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經有3個五邊形,∴1﹣3=7,即完成這一圓環還需7個五邊形.故選D.點睛:本題考查了多邊形的內角和公式,延長正五邊形的兩邊相交于一點,并求出這個角的度數是解題的關鍵,注意需要減去已有的3個正五邊形.5、C【解析】【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;由對稱軸為x==1,可得2a+b=0;當x=-1時圖象在x軸下方得到y=a-b+c<0,結合b=-2a可得3a+c<0;觀察圖象可知拋物線的頂點為(1,3),可得方程有兩個相等的實數根,據此對各選項進行判斷即可.【詳解】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0,故A選項錯誤;∵對稱軸x==1,∴b=-2a,即2a+b=0,故B選項錯誤;當x=-1時,y=a-b+c<0,又∵b=-2a,∴3a+c<0,故C選項正確;∵拋物線的頂點為(1,3),∴的解為x1=x2=1,即方程有兩個相等的實數根,故D選項錯誤,故選C.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0)的圖象,當a>0,開口向上,函數有最小值,a<0,開口向下,函數有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側,a與b異號,對稱軸在y軸的右側;當c>0,拋物線與y軸的交點在x軸的上方;當△=b2-4ac>0,拋物線與x軸有兩個交點.6、C【解析】試題分析:根據一次函數y=kx+b(k≠0,k、b為常數)的圖像與性質可知:當k>0,b>0時,圖像過一二三象限;當k>0,b<0時,圖像過一三四象限;當k<0,b>0時,圖像過一二四象限;當k<0,b<0,圖像過二三四象限.這個一次函數的k=<0與b=1>0,因此不經過第三象限.答案為C考點:一次函數的圖像7、D【解析】
直接合并同類項,合并同類項時,把同類項的系數相加,所得和作為合并后的系數,字母和字母的指數不變.【詳解】2a2+3a2=5a2.故選D.【點睛】本題考查了利用同類項的定義及合并同類項,熟練掌握合并同類項的方法是解答本題的關鍵.所含字母相同,并且相同字母的指數也相同的項,叫做同類項;合并同類項時,把同類項的系數相加,所得和作為合并后的系數,字母和字母的指數不變.8、D【解析】【分析】根據中位數和眾數的定義進行求解即可得答案.【詳解】對這組數據重新排列順序得,25,26,27,28,29,29,30,處于最中間是數是28,∴這組數據的中位數是28,在這組數據中,29出現的次數最多,∴這組數據的眾數是29,故選D.【點睛】本題考查了中位數和眾數的概念,熟練掌握眾數和中位數的概念是解題的關鍵.一組數據中出現次數最多的數據叫做眾數,一組數據按從小到大(或從大到小)排序后,位于最中間的數(或中間兩數的平均數)是這組數據的中位數.9、D【解析】試題解析:A.∵3+2=5,∴2,3,5不能組成三角形,故A錯誤;B.∵4+2<7,∴7,4,2不能組成三角形,故B錯誤;C.∵4+3<8,∴3,4,8不能組成三角形,故C錯誤;D.∵3+3>4,∴3,3,4能組成三角形,故D正確;故選D.10、C【解析】
本題可從反比例函數圖象上的點E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關系,列出等式求出k值.【詳解】由題意得:E、M、D位于反比例函數圖象上,則,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S□ONMG=|k|.又∵M為矩形ABCO對角線的交點,∴S矩形ABCO=4S□ONMG=4|k|,∵函數圖象在第一象限,k>0,∴.解得:k=1.故選C.【點睛】本題考查反比例函數系數k的幾何意義,過雙曲線上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成的矩形面積就等于|k|,本知識點是中考的重要考點,同學們應高度關注.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】
根據拋物線與x軸只有一個公共交點,則判別式等于0,據此即可求解.【詳解】∵拋物線y=3x2﹣6x+a與x軸只有一個公共點,∴判別式Δ=36-12a=0,解得:a=3,故答案為3【點睛】本題考查了二次函數圖象與x軸的公共點的個數的判定方法,如果△>0,則拋物線與x軸有兩個不同的交點;如果△=0,與x軸有一個交點;如果△<0,與x軸無交點.12、【解析】
根據題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數目以及能搭成一個三角形的情況數目,根據概率的計算方法,計算可得答案.【詳解】根據題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數與總情況數之比.13、36°或37°.【解析】分析:先過E作EG∥AB,根據平行線的性質可得∠AEF=∠BAE+∠DFE,再設∠CEF=x,則∠AEC=2x,根據6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進而得到∠C的度數.詳解:如圖,過E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數為整數,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點睛:本題主要考查了平行線的性質以及三角形外角性質的運用,解決問題的關鍵是作平行線,解題時注意:兩直線平行,內錯角相等.14、(4,2).【解析】
利用圖象旋轉和平移可以得到結果.【詳解】解:∵△CDO繞點C逆時針旋轉90°,得到△CBD′,則BD′=OD=2,∴點D坐標為(4,6);當將點C與點O重合時,點C向下平移4個單位,得到△OAD′′,∴點D向下平移4個單位.故點D′′坐標為(4,2),故答案為(4,2).【點睛】平移和旋轉:平移是指在同一平面內,將一個圖形整體按照某個直線方向移動一定的距離,這樣的圖形運動叫做圖形的平移運動,簡稱平移.定義在平面內,將一個圖形繞一點按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉.這個定點叫做旋轉中心,轉動的角度叫做旋轉角.15、3【解析】設過點A(2,0)和點B(0,2)的直線的解析式為:,則,解得:,∴直線AB的解析式為:,∵點C(-1,m)在直線AB上,∴,即.故答案為3.點睛:在平面直角坐標系中,已知三點共線和其中兩點的坐標,求第3點坐標中待定字母的值時,通常先由已知兩點的坐標求出過這兩點的直線的解析式,在將第3點的坐標代入所求解析式中,即可求得待定字母的值.16、1.【解析】試題分析:∵圓錐底面半徑為rcm,母線長為10cm,其側面展開圖是圓心角為211°的扇形,∴2πr=×2π×10,解得r=1.故答案為:1.【考點】圓錐的計算.17、1.【解析】試題解析:∵原二次根式有意義,∴x-3≥0,3-x≥0,∴x=3,y=4,∴x+y=1.考點:二次根式有意義的條件.三、解答題(共7小題,滿分69分)18、(1)AB的解析式是y=-x+1.點B(3,0).(2)n-1;(3)(3,4)或(5,2)或(3,2).【解析】試題分析:(1)把A的坐標代入直線AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐標;(2)過點A作AM⊥PD,垂足為M,求得AM的長,即可求得△BPD和△PAB的面積,二者的和即可求得;(3)當S△ABP=2時,n-1=2,解得n=2,則∠OBP=45°,然后分A、B、P分別是直角頂點求解.試題解析:(1)∵y=-x+b經過A(0,1),∴b=1,∴直線AB的解析式是y=-x+1.當y=0時,0=-x+1,解得x=3,∴點B(3,0).(2)過點A作AM⊥PD,垂足為M,則有AM=1,∵x=1時,y=-x+1=,P在點D的上方,∴PD=n-,S△APD=PD?AM=×1×(n-)=n-由點B(3,0),可知點B到直線x=1的距離為2,即△BDP的邊PD上的高長為2,∴S△BPD=PD×2=n-,∴S△PAB=S△APD+S△BPD=n-+n-=n-1;(3)當S△ABP=2時,n-1=2,解得n=2,∴點P(1,2).∵E(1,0),∴PE=BE=2,∴∠EPB=∠EBP=45°.第1種情況,如圖1,∠CPB=90°,BP=PC,過點C作CN⊥直線x=1于點N.∵∠CPB=90°,∠EPB=45°,∴∠NPC=∠EPB=45°.又∵∠CNP=∠PEB=90°,BP=PC,∴△CNP≌△BEP,∴PN=NC=EB=PE=2,∴NE=NP+PE=2+2=4,∴C(3,4).第2種情況,如圖2∠PBC=90°,BP=BC,過點C作CF⊥x軸于點F.∵∠PBC=90°,∠EBP=45°,∴∠CBF=∠PBE=45°.又∵∠CFB=∠PEB=90°,BC=BP,∴△CBF≌△PBE.∴BF=CF=PE=EB=2,∴OF=OB+BF=3+2=5,∴C(5,2).第3種情況,如圖3,∠PCB=90°,CP=EB,∴∠CPB=∠EBP=45°,在△PCB和△PEB中,∴△PCB≌△PEB(SAS),∴PC=CB=PE=EB=2,∴C(3,2).∴以PB為邊在第一象限作等腰直角三角形BPC,點C的坐標是(3,4)或(5,2)或(3,2).考點:一次函數綜合題.19、(1)①k=5;②見解析,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①;②0<a<1或a>5【解析】
(1)①求出直線的解析式,利用待定系數法即可解決問題;②如圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①求出A,B兩點坐標,利用待定系數法即可解決問題;②分兩種情形求出△PAC的面積=24時a的值,即可判斷.【詳解】(1)①∵,,∴直線的解析式為,∵點B在直線上,縱坐標為,∴,解得x=2∴,∴;②如下圖,由此AO交雙曲線于點C,延長BO交雙曲線于點D,線段CD即為所求;(2)①∵點在上,∴k=5,∵四邊形ABCD是矩形,∴OA=OB=OC=OD,∴A,B關于直線y=x對稱,∴,則有:,解得;②如下圖,當點P在點A的右側時,作點C關于y軸的對稱點C′,連接AC,AC′,PC,PC′,PA.∵A,C關于原點對稱,,∴,∵,當時,∴,∴,∴a=5或(舍棄),當點P在點A的左側時,同法可得a=1,∴滿足條件的a的范圍為或.【點睛】本題屬于反比例函數與一次函數的綜合問題,熟練掌握待定系數法解函數解析式以及交點坐標的求法是解決本題的關鍵.20、證明見解析.【解析】
易證△DAC≌△CEF,即可得證.【詳解】證明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,∴∠DCA=∠CFE,在△DAC和△CEF中:,∴△DAC≌△CEF(AAS),∴AD=CE,AC=EF,∴AE=AD+EF【點睛】此題主要考查全等三角形的判定與性質,解題的關鍵是熟知全等三角形的判定與性質.21、見解析【解析】
證明:∵DE∥AB,∴∠CAB=∠ADE.在△ABC和△DAE中,∵,∴△ABC≌△DAE(ASA).∴BC=AE.【點睛】根據兩直線平行,內錯角相等求出∠CAB=∠ADE,然后利用“角邊角”證明△ABC和△DAE全等,再根據全等三角形對應邊相等證明即可.22、3【解析】試題分析:根據AB=30,BD=6,AD=8,利用勾股定理的逆定理求證△ABD是直角三角形,再利用勾股定理求出CD的長,然后利用三角形面積公式即可得出答案.試題解析:∵BD3+AD3=63+83=303=AB3,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD=,∴S△ABC=BC?AD=(BD+CD)?AD=×33×8=3,因此△ABC的面積為3.答:△A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《護腎護健康》課件
- 《車輛識別代碼》課件 - 深入了解汽車的身份證號碼
- 《社區健康管理與發展》課件
- 《物業管理人員工作規范》課件
- 《探索教育原理》課件
- 《急性心力衰竭急救》課件
- 《禮儀與職業》課件
- 咸陽職業技術學院《動物遺傳學》2023-2024學年第二學期期末試卷
- 江蘇建筑職業技術學院《田徑教學與訓練Ⅱ》2023-2024學年第二學期期末試卷
- 2025年鞍山貨運資格證試題及答案
- 《平法識圖與鋼筋算量》課件
- 《電力系統繼電保護課程設計》兩臺三繞組變壓器線路繼電保護
- 浙江省杭州市(2024年-2025年小學五年級語文)人教版期末考試(下學期)試卷及答案
- 采購績效管理制度
- 政治導學案編寫與應用 課件高中政治統編版
- 2024年山東省濟南市中考化學試卷( 含答案)
- 2025屆湖北省部分學校高三(9月)起點第一次聯考語文試卷及答案
- 2024年北京市高考數學真題試卷及答案
- 走近湖湘紅色人物智慧樹知到答案2024年湖南工商大學
- Elephant'sfriends繪本閱讀(課件)人教PEP版英語三年級上冊
- AQ6111-2023個體防護裝備安全管理規范
評論
0/150
提交評論