




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省衡陽縣第五中學新高考適應性考試數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設集合,,則()A. B.C. D.2.已知函數,存在實數,使得,則的最大值為()A. B. C. D.3.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.4.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件5.某工廠利用隨機數表示對生產的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數表的第4行到第6行:若從表中第6行第6列開始向右讀取數據,則得到的第6個樣本編號是()A.324 B.522 C.535 D.5786.復數的共軛復數在復平面內所對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.閱讀如圖所示的程序框圖,運行相應的程序,則輸出的結果為()A. B.6 C. D.8.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.9.△ABC的內角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或10.已知等差數列中,則()A.10 B.16 C.20 D.2411.已知是虛數單位,若,,則實數()A.或 B.-1或1 C.1 D.12.函數滿足對任意都有成立,且函數的圖象關于點對稱,,則的值為()A.0 B.2 C.4 D.1二、填空題:本題共4小題,每小題5分,共20分。13.設,則“”是“”的__________條件.14.下表是關于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調查數據,人數如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現要在所有參與調查的人中用分層抽樣的方法抽取個人做進一步的調研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.15.展開式中的系數為_________.16.已知數列滿足:點在直線上,若使、、構成等比數列,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值18.(12分)已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.(1)求橢圓C的方程;(2)設點,為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.19.(12分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.20.(12分)如圖,⊙的直徑的延長線與弦的延長線相交于點,為⊙上一點,,交于點.求證:~.21.(12分)已知的內角,,的對邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.22.(10分)已知函數(為常數)(Ⅰ)當時,求的單調區間;(Ⅱ)若為增函數,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.【點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.2、A【解析】
畫出分段函數圖像,可得,由于,構造函數,利用導數研究單調性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點睛】本題考查了導數在函數性質探究中的應用,考查了學生數形結合,轉化劃歸,綜合分析,數學運算的能力,屬于較難題.3、A【解析】
由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據雙曲線的性質即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應用,考查了轉化化歸思想,屬于中檔題.4、A【解析】
畫出“,,,所表示的平面區域,即可進行判斷.【詳解】如圖,“且”表示的區域是如圖所示的正方形,記為集合P,“”表示的區域是單位圓及其內部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點睛】本題考查了不等式表示的平面區域問題,考查命題的充分條件和必要條件的判斷,難度較易.5、D【解析】
因為要對600個零件進行編號,所以編號必須是三位數,因此按要求從第6行第6列開始向右讀取數據,大于600的,重復出現的舍去,直至得到第六個編號.【詳解】從第6行第6列開始向右讀取數據,編號內的數據依次為:,因為535重復出現,所以符合要求的數據依次為,故第6個數據為578.選D.【點睛】本題考查了隨機數表表的應用,正確掌握隨機數表法的使用方法是解題的關鍵.6、D【解析】
由復數除法運算求出,再寫出其共軛復數,得共軛復數對應點的坐標.得結論.【詳解】,,對應點為,在第四象限.故選:D.【點睛】本題考查復數的除法運算,考查共軛復數的概念,考查復數的幾何意義.掌握復數的運算法則是解題關鍵.7、D【解析】
用列舉法,通過循環過程直接得出與的值,得到時退出循環,即可求得.【詳解】執行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應該不滿足條件,退出循環,輸出S的值為.故選D.【點睛】本題主要考查了循環結構的程序框圖的應用,正確依次寫出每次循環得到的與的值是解題的關鍵,難度較易.8、D【解析】
設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.9、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.10、C【解析】
根據等差數列性質得到,再計算得到答案.【詳解】已知等差數列中,故答案選C【點睛】本題考查了等差數列的性質,是數列的??碱}型.11、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數的運算,屬于基礎題12、C【解析】
根據函數的圖象關于點對稱可得為奇函數,結合可得是周期為4的周期函數,利用及可得所求的值.【詳解】因為函數的圖象關于點對稱,所以的圖象關于原點對稱,所以為上的奇函數.由可得,故,故是周期為4的周期函數.因為,所以.因為,故,所以.故選:C.【點睛】本題考查函數的奇偶性和周期性,一般地,如果上的函數滿足,那么是周期為的周期函數,本題屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、充分必要【解析】
根據充分條件和必要條件的定義可判斷兩者之間的條件關系.【詳解】當時,有,故“”是“”的充分條件.當時,有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.【點睛】本題考查充分必要條件的判斷,可利用定義來判斷,也可以根據兩個條件構成命題及逆命題的真假來判斷,還可以利用兩個條件對應的集合的包含關系來判斷,本題屬于容易題.14、32【解析】
由已知可得抽取的比例,計算出所有被調查的人數,再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調查的總人數為人,則分層抽樣的樣本容量是人.故答案為:32【點睛】本題考查分層抽樣中求樣本容量,屬于基礎題.15、【解析】
變換,根據二項式定理計算得到答案.【詳解】的展開式的通項為:,,取和,計算得到系數為:.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力和應用能力.16、13【解析】
根據點在直線上可求得,由等比中項的定義可構造方程求得結果.【詳解】在上,,成等比數列,,即,解得:.故答案為:.【點睛】本題考查根據三項成等比數列求解參數值的問題,涉及到等比中項的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】
(1)要證明線面平行,需證明線線平行,取的中點,連接,根據條件證明,即;(2)以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標系,求兩個平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點,連接.∵,∴為的中點.又為的中點,∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標系,不妨設,則,,,,,,,,.設平面的法向量為,則,即,令,得.設平面的法向量為,則,即,令,得.從而,故平面與平面所成銳二面角的余弦值為.【點睛】本題考查線面平行的證明和空間坐標法解決二面角的問題,意在考查空間想象能力,推理證明和計算能力,屬于中檔題型,證明線面平行,或證明面面平行時,關鍵是證明線線平行,所以做輔助線或證明時,需考慮構造中位線或平行四邊形,這些都是證明線線平行的常方法.18、(1);(2)當=0時,點O到直線MN的距離為定值.【解析】
(1)的面積最大時,是短軸端點,由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時,設其方程為,現橢圓方程聯立消元()后應用韋達定理得,注意,一是計算,二是計算原點到直線的距離,兩者比較可得結論.【詳解】(1)因為在橢圓上,當是短軸端點時,到軸距離最大,此時面積最大,所以,由,解得,所以橢圓方程為.(2)在時,設直線方程為,原點到此直線的距離為,即,由,得,,,所以,,,所以當時,,,為常數.若,則,,,,,綜上所述,當=0時,點O到直線MN的距離為定值.【點睛】本題考查求橢圓方程與橢圓的幾何性質,考查直線與橢圓的位置關系,考查運算求解能力.解題方法是“設而不求”法.在直線與圓錐曲線相交時常用此法通過韋達定理聯系已知式與待求式.19、(1),;(2)見解析.【解析】
(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線的方程與曲線的方程聯立,求出點、的坐標,即可得出線段的中點的坐標;(2)求得,寫出直線的參數方程,將直線的參數方程與曲線的普通方程聯立,利用韋達定理求得的值,進而可得出結論.【詳解】(1)曲線的極坐標方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標方程為.將直線的極坐標方程化為普通方程得,聯立,得或,則點、,因此,線段的中點為;(2)由(1)得,,易知的垂直平分線的參數方程為(為參數),代入的普通方程得,,因此,.【點睛】本題考查曲線的極坐標方程與普通方程之間的轉化,同時也考查了直線參數幾何意義的應用,涉及韋達定理的應用,考查計算能力,屬于中等題.20、證明見解析【解析】
根據相似三角形的判定定理,已知兩個三角形有公共角,題中未給出線段比例關系,故可根據判定定理一需找到另外一組相等角,結合平面幾何的知識證得即可.【詳解】證明:∵,所以,又因為,所以.在與中,,,故~.【點睛】本題考查平面幾何中同弧所對的圓心角與圓周角的關系、相似三角形的判定定理;考查邏輯推理能力和數形結合思想;分析圖形,找出角與角之間的關系是證明本題的關鍵;屬于基礎題.21、(1);(2).【解析】
(1)利用正弦定理將目標式邊化角,結合倍角公式,即可整理化簡求得結果;(2)由面積公式,可以求得,再利用余弦定理,即可求得,結合即可求得周長.【詳解】(1)由題設得.由正弦定理得∵∴,所以或.當,(舍)故,解得.(2),從而.由余弦定理得.解得.∴.故三角形的周長為.【點睛】本題考查由余弦定理解三角形,涉及面積公式,正弦的倍角公式,應用正弦定理將邊化角,屬綜合性基礎題.22、(Ⅰ)單調遞增區間為,;單調遞減區間為;(Ⅱ).【解析】
(Ⅰ)對函數進行求導,利用導數判斷函數的單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 ISO 23231:2025 EN Textiles - Determination of dimensional change of fabrics - Accelerated machine method
- 2025年新人教版部編本六班級語文上冊教學方案附教學進度支配表
- 2025年幼兒園教務工作方案
- 出鏡記者與主持人實務 課件 第十一章 融合現場
- 2025年一班級語文教學工作方案
- 2025年有創意美食節活動策劃方案
- 介紹會計行業
- 山西省太原市2024-2025學年高三上學期期末學業診斷英語試卷 含解析
- 2023年工作總結與方案
- 經內鏡染色檢查護理配合
- 維修電工高級技師培訓計劃與教學大綱
- 川教版四年級《生命.生態.安全》下冊全冊 課件
- 鋼板樁支護施工方案完整版
- 醫院培訓課件:《結直腸癌圍手術期的護理》
- 機器學習 試卷2套
- IATF16949-2024 內部審核方案
- 電子商務師(三級)技能理論考試復習題及答案
- if函數的使用省公開課獲獎課件市賽課比賽一等獎課件
- 2024年全國職業院校技能大賽高職組(康復治療技術賽項)考試題庫(含答案)
- 第四單元參考活動3《設計橡皮章》課件(第二課時) 綜合實踐活動八年級上冊+
- HJ24-2020環境影響評價技術導則輸變電
評論
0/150
提交評論