2022-2023學年山西省晉城市陵川一中高三數學第一學期期末質量跟蹤監視試題含解析_第1頁
2022-2023學年山西省晉城市陵川一中高三數學第一學期期末質量跟蹤監視試題含解析_第2頁
2022-2023學年山西省晉城市陵川一中高三數學第一學期期末質量跟蹤監視試題含解析_第3頁
2022-2023學年山西省晉城市陵川一中高三數學第一學期期末質量跟蹤監視試題含解析_第4頁
2022-2023學年山西省晉城市陵川一中高三數學第一學期期末質量跟蹤監視試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.要得到函數的圖象,只需將函數圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度2.若函數有且僅有一個零點,則實數的值為()A. B. C. D.3.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.4.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數是()A. B. C. D.5.若復數滿足(是虛數單位),則()A. B. C. D.6.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或97.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為()A.56383 B.57171 C.59189 D.612428.下列函數中既關于直線對稱,又在區間上為增函數的是()A.. B.C. D.9.已知函數的最小正周期為,且滿足,則要得到函數的圖像,可將函數的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度10.某設備使用年限x(年)與所支出的維修費用y(萬元)的統計數據分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年11.已知拋物線經過點,焦點為,則直線的斜率為()A. B. C. D.12.在中所對的邊分別是,若,則()A.37 B.13 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(為虛數單位),則的共軛復數是_____,_____.14.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數列,則的離心率為__________.15.設函數,則滿足的的取值范圍為________.16.近年來,新能源汽車技術不斷推陳出新,新產品不斷涌現,在汽車市場上影響力不斷增大.動力蓄電池技術作為新能源汽車的核心技術,它的不斷成熟也是推動新能源汽車發展的主要動力.假定現在市售的某款新能源汽車上,車載動力蓄電池充放電循環次數達到2000次的概率為85%,充放電循環次數達到2500次的概率為35%.若某用戶的自用新能源汽車已經經過了2000次充電,那么他的車能夠充電2500次的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.18.(12分)已知函數(1)若函數在處取得極值1,證明:(2)若恒成立,求實數的取值范圍.19.(12分)已知函數,函數.(Ⅰ)判斷函數的單調性;(Ⅱ)若時,對任意,不等式恒成立,求實數的最小值.20.(12分)如圖,設A是由個實數組成的n行n列的數表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數,且aij{1,-1}.記S(n,n)為所有這樣的數表構成的集合.對于,記ri(A)為A的第i行各數之積,cj(A)為A的第j列各數之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數n,對于所有的AS(n,n),求l(A)的取值集合.21.(12分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)若函數有兩個極值點,求證:.22.(10分)在平面直角坐標系中,直線的參數方程為(為參數),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

分析:根據三角函數的圖象關系進行判斷即可.詳解:將函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),

得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數的圖象變換,結合和的關系是解決本題的關鍵.2、D【解析】

推導出函數的圖象關于直線對稱,由題意得出,進而可求得實數的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數的圖象關于直線對稱.若函數的零點不為,則該函數的零點必成對出現,不合題意.所以,,即,解得或.①當時,令,得,作出函數與函數的圖象如下圖所示:此時,函數與函數的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數的零點個數求參數,考查函數圖象對稱性的應用,解答的關鍵就是推導出,在求出參數后要對參數的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.3、A【解析】

首先找出與面所成角,根據所成角所在三角形利用余弦定理求出所成角的余弦值,再根據同角三角函數關系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎題.4、B【解析】

①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.5、B【解析】

利用復數乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復數的乘法運算,考查復數模的計算,屬于基礎題.6、C【解析】

由題意利用兩個向量的數量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數量積的定義和公式,屬于基礎題.7、C【解析】

根據“被5除余3且被7除余2的正整數”,可得這些數構成等差數列,然后根據等差數列的前項和公式,可得結果.【詳解】被5除余3且被7除余2的正整數構成首項為23,公差為的等差數列,記數列則令,解得.故該數列各項之和為.故選:C.【點睛】本題考查等差數列的應用,屬基礎題。8、C【解析】

根據函數的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區間上為減函數,則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數基本性質,根據函數的解析式判斷函數的對稱性和單調性,屬于基礎題.9、C【解析】

依題意可得,且是的一條對稱軸,即可求出的值,再根據三角函數的平移規則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點睛】本題考查三角函數的性質以及三角函數的變換規則,屬于基礎題.10、D【解析】

根據樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.11、A【解析】

先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經過點,,,,故選:A【點睛】考查拋物線的基礎知識及斜率的運算公式,基礎題.12、D【解析】

直接根據余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

直接利用復數的乘法運算化簡,從而得到復數的共軛復數和的模.【詳解】,則復數的共軛復數為,且.故答案為:;.【點睛】本題考查了復數代數形式的乘除運算,考查了復數的基本概念,是基礎的計算題.14、【解析】

設,,,根據勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,,成等差數列,設,,,而,根據勾股定理有:,解得:,由橢圓定義知:的周長為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點睛】本題考查橢圓的離心率以及橢圓的定義的應用,考查計算能力.15、【解析】

當時,函數單調遞增,當時,函數為常數,故需滿足,且,解得答案.【詳解】,當時,函數單調遞增,當時,函數為常數,需滿足,且,解得.故答案為:.【點睛】本題考查了根據函數單調性解不等式,意在考查學生對于函數性質的靈活運用.16、【解析】

記“某用戶的自用新能源汽車已經經過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:,由條件概率公式即得解.【詳解】記“某用戶的自用新能源汽車已經經過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:故答案為:【點睛】本題考查了條件概率的應用,考查了學生概念理解,數學應用,數學運算的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)連接交于點,連接,由于平面,得出,根據線線位置關系得出,利用線面垂直的判定和性質得出,結合條件以及面面垂直的判定,即可證出平面平面;(Ⅱ)根據題意,建立空間直角坐標系,利用空間向量法分別求出和平面的法向量,利用空間向量線面角公式,即可求出直線與平面所成角的余弦值.【詳解】解:(Ⅰ)證明:連接交于點,連接,則平面平面,平面,,為的中點,為的中點,平面,,平面,平面,平面平面(Ⅱ)建立如圖所示空間直角坐標系,設則,,,,,設平面的法向量為,則,取得,設直線與平面所成角為,直線與平面所成角的余弦值為.【點睛】本題考查面面垂直的判定以及利用空間向量法求線面角的余弦值,考查空間想象能力和推理能力.18、(1)證明見詳解;(2)【解析】

(1)求出函數的導函數,由在處取得極值1,可得且.解出,構造函數,分析其單調性,結合,即可得到的范圍,命題得證;

(2)由分離參數,得到恒成立,構造函數,求導函數,再構造函數,進行二次求導.由知,則在上單調遞增.根據零點存在定理可知有唯一零點,且.由此判斷出時,單調遞減,時,單調遞增,則,即.由得,再次構造函數,求導分析單調性,從而得,即,最終求得,則.【詳解】解:(1)由題知,∵函數在,處取得極值1,,且,,,令,則為增函數,,即成立.(2)不等式恒成立,即不等式恒成立,即恒成立,令,則令,則,,,在上單調遞增,且,有唯一零點,且,當時,,,單調遞減;當時,,,單調遞增.,由整理得,令,則方程等價于而在上恒大于零,在上單調遞增,.,∴實數的取值范圍為.【點睛】本題考查了函數的極值,利用導函數判斷函數的單調性,函數的零點存在定理,證明不等式,解決不等式恒成立問題.其中多次構造函數,是解題的關鍵,屬于綜合性很強的難題.19、(1)故函數在上單調遞增,在上單調遞減;(2).【解析】試題分析:(Ⅰ)根據題意得到的解析式和定義域,求導后根據導函數的符號判斷單調性.(Ⅱ)分析題意可得對任意,恒成立,構造函數,則有對任意,恒成立,然后通過求函數的最值可得所求.試題解析:(I)由題意得,,∴.當時,,函數在上單調遞增;當時,令,解得;令,解得.故函數在上單調遞增,在上單調遞減.綜上,當時,函數在上單調遞增;當時,函數在上單調遞增,在上單調遞減.(II)由題意知.,當時,函數單調遞增.不妨設,又函數單調遞減,所以原問題等價于:當時,對任意,不等式恒成立,即對任意,恒成立.記,由題意得在上單調遞減.所以對任意,恒成立.令,,則在上恒成立.故,而在上單調遞增,所以函數在上的最大值為.由,解得.故實數的最小值為.20、(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】

(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設存在,得出矛盾,從而證明結論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數中有9個1,9個-1.令.一方面,由于這18個數中有9個1,9個-1,從而①,另一方面,表示數表中所有元素之積(記這81個實數之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個數,由③知,上述2n個實數中,-1的個數一定為偶數,該偶數記為,則1的個數為2n-2k,所以,對數表,顯然.將數表中的由1變為-1,得到數表,顯然,將數表中的由1變為-1,得到數表,顯然,依此類推,將數表中的由1變為-1,得到數表,即數表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【點睛】本題為數列的創新應用題,考查數學分析與思考能力及推理求解能力,解題關鍵是讀懂題意,根據引入的概念與性質進行推

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論