2024屆湖南省株洲市醴陵市中考數學考前最后一卷含解析_第1頁
2024屆湖南省株洲市醴陵市中考數學考前最后一卷含解析_第2頁
2024屆湖南省株洲市醴陵市中考數學考前最后一卷含解析_第3頁
2024屆湖南省株洲市醴陵市中考數學考前最后一卷含解析_第4頁
2024屆湖南省株洲市醴陵市中考數學考前最后一卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖南省株洲市醴陵市中考數學考前最后一卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,BC平分∠ABE,AB∥CD,E是CD上一點,若∠C=35°,則∠BED的度數為()A.70° B.65° C.62° D.60°2.2017年,太原市GDP突破三千億元大關,達到3382億元,經濟總量比上年增長了426.58億元,達到近三年來增量的最高水平,數據“3382億元”用科學記數法表示為()A.3382×108元B.3.382×108元C.338.2×109元D.3.382×1011元3.若一個凸多邊形的內角和為720°,則這個多邊形的邊數為A.4 B.5 C.6 D.74.-4的絕對值是()A.4 B. C.-4 D.5.(2011?雅安)點P關于x軸對稱點為P1(3,4),則點P的坐標為()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)6.如圖1,在矩形ABCD中,動點E從A出發,沿AB→BC方向運動,當點E到達點C時停止運動,過點E做FE⊥AE,交CD于F點,設點E運動路程為x,FC=y,如圖2所表示的是y與x的函數關系的大致圖象,當點E在BC上運動時,FC的最大長度是,則矩形ABCD的面積是()A. B.5 C.6 D.7.我國古代數學名著《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.8.方程2x2﹣x﹣3=0的兩個根為()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=39.2018年1月,“墨子號”量子衛星實現了距離達7600千米的洲際量子密鑰分發,這標志著“墨子號”具備了洲際量子保密通信的能力.數字7600用科學記數法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×10210.如圖,在平面直角坐標系xOy中,菱形AOBC的一個頂點O在坐標原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數y=在第一象限內的圖象經過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.80二、填空題(共7小題,每小題3分,滿分21分)11.已知∠=32°,則∠的余角是_____°.12.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發時間x(時)的函數的圖象,請問當小明到達B地時,小亮距離A地_____千米.13.如圖,在△ABC中,AD、BE分別是邊BC、AC上的中線,AB=AC=5,cos∠C=,那么GE=_______.14.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數是_____.15.如圖,AB是⊙O的直徑,AC與⊙O相切于點A,連接OC交⊙O于D,連接BD,若∠C=40°,則∠B=_____度.16.如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長線于F,若∠F=30°,DE=1,則BE的長是.17.如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交于點E,以點O為圓心,OC的長為半徑作交OB于點D,若OA=2,則陰影部分的面積為.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:,其中x=﹣1.19.(5分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數量關系,并說明理由.20.(8分)先化簡:,再從、2、3中選擇一個合適的數作為a的值代入求值.21.(10分)先化簡,再求值:,再從的范圍內選取一個你最喜歡的值代入,求值.22.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.23.(12分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.24.(14分)為了解朝陽社區歲居民最喜歡的支付方式,某興趣小組對社區內該年齡段的部分居民展開了隨機問卷調查(每人只能選擇其中一項),并將調查數據整理后繪成如下兩幅不完整的統計圖.請根據圖中信息解答下列問題:求參與問卷調查的總人數.補全條形統計圖.該社區中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

由AB∥CD,根據兩直線平行,內錯角相等,即可求得∠ABC的度數,又由BC平分∠ABE,即可求得∠ABE的度數,繼而求得答案.【詳解】∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°,∵BC平分∠ABE,∴∠ABE=2∠ABC=70°,∵AB∥CD,∴∠BED=∠ABE=70°.故選:A.【點睛】本題考查了平行線的性質,解題的關鍵是掌握平行線的性質進行解答.2、D【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】3382億=338200000000=3.382×1.故選:D.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.3、C【解析】

設這個多邊形的邊數為n,根據多邊形的內角和定理得到(n﹣2)×180°=720°,然后解方程即可.【詳解】設這個多邊形的邊數為n,由多邊形的內角和是720°,根據多邊形的內角和定理得(n-2)180°=720°.解得n=6.故選C.【點睛】本題主要考查多邊形的內角和定理,熟練掌握多邊形的內角和定理是解答本題的關鍵.4、A【解析】

根據絕對值的概念計算即可.(絕對值是指一個數在坐標軸上所對應點到原點的距離叫做這個數的絕對值.)【詳解】根據絕對值的概念可得-4的絕對值為4.【點睛】錯因分析:容易題.選錯的原因是對實數的相關概念沒有掌握,與倒數、相反數的概念混淆.5、A【解析】∵關于x軸對稱的點,橫坐標相同,縱坐標互為相反數,∴點P的坐標為(3,﹣4).故選A.6、B【解析】

易證△CFE∽△BEA,可得,根據二次函數圖象對稱性可得E在BC中點時,CF有最大值,列出方程式即可解題.【詳解】若點E在BC上時,如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數圖象對稱性可得E在BC中點時,CF有最大值,此時,BE=CE=x﹣,即,∴,當y=時,代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.【點睛】本題考查了二次函數頂點問題,考查了相似三角形的判定和性質,考查了矩形面積的計算,本題中由圖象得出E為BC中點是解題的關鍵.7、B【解析】

設大馬有匹,小馬有匹,根據題意可得等量關系:大馬數+小馬數=100,大馬拉瓦數+小馬拉瓦數=100,根據等量關系列出方程即可.【詳解】解:設大馬有匹,小馬有匹,由題意得:,故選:B.【點睛】本題主要考查的是由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.8、A【解析】

利用因式分解法解方程即可.【詳解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故選A.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數學轉化思想).9、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:7600=7.6×103,故選B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、B【解析】

過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,結合反比例函數圖象上點的坐標特征即可求出a的值,再根據四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結合菱形的面積公式即可得出結論.【詳解】過點A作AM⊥x軸于點M,如圖所示.設OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標為(a,a).∵點A在反比例函數y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點睛】本題考查了菱形的性質、解直角三角形以及反比例函數圖象上點的坐標特征,解題的關鍵是找出S△AOF=S菱形OBCA.二、填空題(共7小題,每小題3分,滿分21分)11、58°【解析】

根據余角:如果兩個角的和等于90°(直角),就說這兩個角互為余角.即其中一個角是另一個角的余角可得答案.【詳解】解:∠α的余角是:90°-32°=58°.故答案為58°.【點睛】本題考查余角,解題關鍵是掌握互為余角的兩個角的和為90度.12、1【解析】

根據題意設小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點睛】此題考查一次函數的應用,解題關鍵在于列出方程組.13、【解析】

過點E作EF⊥BC交BC于點F,分別求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再結合△BGD∽△BEF即可.【詳解】過點E作EF⊥BC交BC于點F.∵AB=AC,AD為BC的中線∴AD⊥BC∴EF為△ADC的中位線.又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2∴BF=6∴在Rt△BEF中BE==,又∵△BGD∽△BEF∴,即BG=.GE=BE-BG=故答案為.【點睛】本題考查的知識點是三角形的相似,解題的關鍵是熟練的掌握三角形的相似.14、25°.【解析】∵直尺的對邊平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.15、25【解析】∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案為:25.16、2【解析】∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。又AB的垂直平分線DE交AC于E,∴∠EBA=∠A=30°。∴Rt△DBE中,BE=2DE=2。17、.【解析】試題解析:連接OE、AE,∵點C為OA的中點,∴∠CEO=30°,∠EOC=60°,∴△AEO為等邊三角形,∴S扇形AOE=∴S陰影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===.三、解答題(共7小題,滿分69分)18、.【解析】試題分析:試題解析:原式===當x=時,原式=.考點:分式的化簡求值.19、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質,即可判定△FAE≌△CDE,即可得到CD=FA,再根據CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據E是AD的中點,可得AD=2CD,依據AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質以及平行四邊形的判定與性質,要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或對角的位置上,通過證明四邊形是平行四邊形達到上述目的.20、-1.【解析】

根據分式的加法和除法可以化簡題目中的式子,然后在、2、3中選擇一個使得原分式有意義的值代入化簡后的式子即可解答本題.【詳解】,當時,原式.故答案為:-1.【點睛】本題考查分式的化簡求值,解答本題的關鍵是明確分式化簡求值的方法.21、原式=,把x=2代入的原式=1.【解析】試題分析:先對原分式的分子、分母進行因式分解,然后按順序進行乘除法運算、加減法運算,最后選取有意義的數值代入計算即可.試題解析:原式==當x=2時,原式=122、(1)(1,4)(2)①點M坐標(﹣,)或(﹣,﹣);②m的值為或【解析】

(1)利用待定系數法即可解決問題;(2)①根據tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構建方程即可解決問題;②因為點M、N關于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點D坐標(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當點M在x軸上方時,=,解得m=﹣或3(舍棄),∴M(﹣,),當點M在x軸下方時,=,解得m=﹣或m=3(舍棄),∴點M(﹣,﹣),綜上所述,滿足條件的點M坐標(﹣,)或(﹣,﹣);②如圖中,∵MN∥x軸,∴點M、N關于拋物線的對稱軸對稱,∵四邊形MPNQ是正方形,∴點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,當﹣m2+2m+3=1﹣m時,解得m=,當﹣m2+2m+3=m﹣1時,解得m=,∴滿足條件的m的值為或.【點睛】本題考查二次函數綜合題、銳角三角函數、正方形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數構建方程解決問題,屬于中考壓軸題.23、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數法,列方程求二次函數解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,FG=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當x=7時,y=,∴點F的坐標為(7,).當點F在x軸下方時,設同理求得點F的坐標為(5,).綜上所述,點F的坐標為(7,)或(5,).(3)∵點P在x軸上,∴根據菱形的對稱性可知點P的坐標為(2,0).如圖,當MN在x軸上方時,設T為菱

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論