




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省遼南協作校2024屆高三3月份模擬考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.公比為2的等比數列中存在兩項,,滿足,則的最小值為()A. B. C. D.2.以下關于的命題,正確的是A.函數在區間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象3.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.4.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.5.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.6.已知定義在R上的函數(m為實數)為偶函數,記,,則a,b,c的大小關系為()A. B. C. D.7.閱讀下面的程序框圖,運行相應的程序,程序運行輸出的結果是()A.1.1 B.1 C.2.9 D.2.88.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.9.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數據分析、機器學習、服務器開發五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種10.2019年10月17日是我國第6個“扶貧日”,某醫院開展扶貧日“送醫下鄉”醫療義診活動,現有五名醫生被分配到四所不同的鄉鎮醫院中,醫生甲被指定分配到醫院,醫生乙只能分配到醫院或醫院,醫生丙不能分配到醫生甲、乙所在的醫院,其他兩名醫生分配到哪所醫院都可以,若每所醫院至少分配一名醫生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種11.設f(x)是定義在R上的偶函數,且在(0,+∞)單調遞減,則()A. B.C. D.12.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a二、填空題:本題共4小題,每小題5分,共20分。13.若復數滿足,其中為虛數單位,則的共軛復數在復平面內對應點的坐標為_____.14.若復數z滿足,其中i是虛數單位,則z的模是______.15.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.16.一個房間的地面是由12個正方形所組成,如圖所示.今想用長方形瓷磚鋪滿地面,已知每一塊長方形瓷磚可以覆蓋兩塊相鄰的正方形,即或,則用6塊瓷磚鋪滿房間地面的方法有_______種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數的取值范圍.18.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.19.(12分)已知函數.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數的定義域和值域.20.(12分)如圖,直線y=2x-2與拋物線x2=2py(p>0)交于M1,M2兩點,直線y=p2與(1)求p的值;(2)設A是直線y=p2上一點,直線AM2交拋物線于另一點M3,直線M1M21.(12分)已知函數.(1)若是函數的極值點,求的單調區間;(2)當時,證明:22.(10分)在①,②,③這三個條件中任選一個,補充在下面問題中.若問題中的正整數存在,求的值;若不存在,說明理由.設正數等比數列的前項和為,是等差數列,__________,,,,是否存在正整數,使得成立?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據已知條件和等比數列的通項公式,求出關系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數列通項公式,注意為正整數,如用基本不等式要注意能否取到等號,屬于基礎題.2、D【解析】
利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.3、B【解析】
選B.考點:圓心坐標4、A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設,得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系.5、B【解析】
先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.6、B【解析】
根據f(x)為偶函數便可求出m=0,從而f(x)=﹣1,根據此函數的奇偶性與單調性即可作出判斷.【詳解】解:∵f(x)為偶函數;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點睛】本題考查偶函數的定義,指數函數的單調性,對于偶函數比較函數值大小的方法就是將自變量的值變到區間[0,+∞)上,根據單調性去比較函數值大小.7、C【解析】
根據程序框圖的模擬過程,寫出每執行一次的運行結果,屬于基礎題.【詳解】初始值,第一次循環:,;第二次循環:,;第三次循環:,;第四次循環:,;第五次循環:,;第六次循環:,;第七次循環:,;第九次循環:,;第十次循環:,;所以輸出.故選:C【點睛】本題考查了循環結構的程序框圖的讀取以及運行結果,屬于基礎題.8、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).9、B【解析】
將人臉識別方向的人數分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數.【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數學思想方法,屬于基礎題.10、B【解析】
分兩類:一類是醫院A只分配1人,另一類是醫院A分配2人,分別計算出兩類的分配種數,再由加法原理即可得到答案.【詳解】根據醫院A的情況分兩類:第一類:若醫院A只分配1人,則乙必在醫院B,當醫院B只有1人,則共有種不同分配方案,當醫院B有2人,則共有種不同分配方案,所以當醫院A只分配1人時,共有種不同分配方案;第二類:若醫院A分配2人,當乙在醫院A時,共有種不同分配方案,當乙不在A醫院,在B醫院時,共有種不同分配方案,所以當醫院A分配2人時,共有種不同分配方案;共有20種不同分配方案.故選:B【點睛】本題考查排列與組合的綜合應用,在做此類題時,要做到分類不重不漏,考查學生分類討論的思想,是一道中檔題.11、D【解析】
利用是偶函數化簡,結合在區間上的單調性,比較出三者的大小關系.【詳解】是偶函數,,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數的奇偶性和單調性比較大小,屬于基礎題.12、C【解析】
兩復數相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復數的概念,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
把已知等式變形,再由復數代數形式的乘除運算化簡,求出得答案.【詳解】,,則,的共軛復數在復平面內對應點的坐標為,故答案為【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義準確計算是關鍵,是基礎題.14、【解析】
先求得復數,再由復數模的計算公式即得.【詳解】,,則.故答案為:【點睛】本題考查復數的四則運算和求復數的模,是基礎題.15、【解析】
轉化為,利用二倍角公式可求解得,結合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.16、11【解析】
將圖形中左側的兩列瓷磚的形狀先確定,再由此進行分類,在每一類里面又分按兩種形狀的瓷磚的數量進行分類,在其中會有相同元素的排列問題,需用到“縮倍法”.采用分類計數原理,求得總的方法數.【詳解】(1)先貼如圖這塊瓷磚,然后再貼剩下的部分,按如下分類:5個:,3個,2個:,1個,4個:,(2)左側兩列如圖貼磚,然后貼剩下的部分:3個:,1個,2個:,綜上,一共有(種).故答案為:11.【點睛】本題考查了分類計數原理,排列問題,其中涉及到相同元素的排列,用到了“縮倍法”的思想.屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)時,根據絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價于,求出在的最小值即可.【詳解】(Ⅰ)當時,時,不等式化為,解得,即時,不等式化為,不等式恒成立,即時,不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成立當時,取得最小值為實數的取值范圍是【點睛】本題考查了絕對值不等式的解法與應用問題,也考查了函數絕對值三角不等式的應用問題,屬于常規題型.18、(1)見解析;(2)【解析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標系,求平面的一個法向量與平面的一個法向量,再利用向量數量積運算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因為,所以平面,又平面,所以.(2)設,,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點,為的中點,所以平行且相等,從而平面,又,所以,,兩兩垂直,如圖,建立空間直角坐標系,,,由平面幾何知識,得.則,,,,所以,,.設平面的法向量為,由,可得,令,則,,所以.同理,平面的一個法向量為.設平面與平面所成角為,則,所以.【點睛】本題考查了線面垂直的判定定理及二面角的平面角的求法,重點考查了空間向量的應用,屬中檔題.19、(Ⅰ)(Ⅱ)函數的定義域為,值域為【解析】
(1)由為第二象限角及的值,利用同角三角函數間的基本關系求出及的值,再代入中即可得到結果.(2)函數解析式利用二倍角和輔助角公式將化為一個角的正弦函數,根據的范圍,即可得到函數值域.【詳解】解:(1)因為是第二象限角,且,所以.所以,所以.(2)函數的定義域為.化簡,得,因為,且,,所以,所以.所以函數的值域為.(注:或許有人會認為“因為,所以”,其實不然,因為.)【點睛】本題考查同角三角函數的基本關系式,三角函數函數值求解以及定義域和值域的求解問題,涉及到利用二倍角公式和輔助角公式整理三角函數關系式的問題,意在考查學生的轉化能力和計算求解能力,屬于??碱}型.20、(1)p=4;(2)OA?【解析】試題分析:(1)聯立直線的方程和拋物線的方程y=2x-2x2=2py,化簡寫出根與系數關系,由于直線y=p2平分∠M1FM2,所以kM1F+kM2F=0,代入點的坐標化簡得4-(2+p2)?x試題解析:(1)由y=2x-2x2=2py設M1(x1,因為直線y=p2平分∠M所以y1-p所以4-(2+p2)?x1+x(2)由(1)知拋物線方程為x2=8y,且x1+x設M3(x3,x328所以x2+x整理得:x2由B,M3,②式兩邊同乘x2得:x即:16x由①得:x2x3即:16(x2+所以OA?考點:直線與圓錐曲線的位置關系.【方法點晴】本題考查直線與拋物線的位置關系.閱讀題目后明顯發現,所有的點都是由直線和拋物線相交或者直線與直線相交所得.故第一步先聯立y=2x-2x2=2py,相當于得到M1,M2的坐標,但是設而不求.根據直線y=p221、(1)遞減區間為(-1,0),遞增區間為(2)見解析【解析】
(1)根據函數解析式,先求得導函數,由是函數的極值點可求得參數.求得函數定義域,并根據導函數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國起絨帶市場調查研究報告
- 2025年中國視頻測試儀市場調查研究報告
- 2025安全標準化安全培訓考試試題附參考答案(典型題)
- 25年員工三級安全培訓考試試題帶解析答案可打印
- 2025年項目部治理人員安全培訓考試試題(考題)
- 神經損傷康復指導
- 25年公司項目負責人安全培訓考試試題及答案【基礎+提升】
- 模塊四埋刮板輸送機港口輸送機械與集裝箱機械課件
- 《第一單元 圖文處理與編排 第1課 搜集與處理文字 四、確定版面》教學設計教學反思-2023-2024學年初中信息技術人教版七年級上冊
- 12為人民服務教案-2024-2025學年六年級下冊語文統編版
- 四年級語文下冊第六單元【集體備課】(教材解讀+教學設計)
- 職業心理健康課件
- 電子測量儀器的微機電系統技術考核試卷
- 《綜合英語》專業核心課程建設方案
- 2024年移動網格經理(認證考試)備考試題庫大全-下判斷題匯
- 網絡傳播概論(第5版)課件 第5、6章 智能時代與智能傳播走向、網絡傳播與網絡空間中的人
- 黑龍江省機關事務管理局所屬事業單位招聘筆試真題2023
- 2024-2030年中國軍用掩蔽系統行業市場發展趨勢與前景展望戰略分析報告
- 不緊繃的人生讀書筆記
- 百融云創風險決策引擎V5產品操作手冊
- DB22-T5143-2023城鎮道路薄層罩面技術標準
評論
0/150
提交評論