云南省普洱市二中2024屆高一下數學期末質量跟蹤監視模擬試題含解析_第1頁
云南省普洱市二中2024屆高一下數學期末質量跟蹤監視模擬試題含解析_第2頁
云南省普洱市二中2024屆高一下數學期末質量跟蹤監視模擬試題含解析_第3頁
云南省普洱市二中2024屆高一下數學期末質量跟蹤監視模擬試題含解析_第4頁
云南省普洱市二中2024屆高一下數學期末質量跟蹤監視模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省普洱市二中2024屆高一下數學期末質量跟蹤監視模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,向量,,,則向量可以表示為()A.B.C.D.2.函數在上零點的個數為()A.2 B.3 C.4 D.53.若直線過兩點,,則的斜率為()A. B. C.2 D.4.函數的部分圖象如圖所示,函數,則下列結論正確的是()A.B.函數與的圖象均關于直線對稱C.函數與的圖象均關于點對稱D.函數與在區間上均單調遞增5.將兩個長、寬、高分別為5,4,3的長方體壘在一起,使其中兩個面完全重合,組成一個大長方體,則大長方體的外接球表面積的最大值為()A. B. C. D.6.設點是函數圖象士的任意一點,點滿足,則的最小值為()A. B. C. D.7.中,若,則的形狀是()A.等腰三角形 B.等邊三角形C.銳角三角形 D.直角三角形8.在中,設角,,的對邊分別是,,,且,則一定是()A.等邊三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形9.已知,,,則與的夾角為()A. B. C. D.10.已知,,,若點是所在平面內一點,且,則的最大值等于().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知圓上有兩個點到直線的距離為3,則半徑的取值范圍是________12.的內角的對邊分別為,,,若的面積為,則角_______.13.已知變量,滿足,則的最小值為________.14.在直角坐標系xOy中,一單位圓的圓心的初始位置在,此時圓上一點P的位置在,圓在x軸上沿正向滾動.當圓滾動到圓心位于時,的坐標為________.15.如圖,一棟建筑物AB高(30-10)m,在該建筑物的正東方向有一個通信塔CD.在它們之間的地面M點(B、M、D三點共線)測得對樓頂A、塔頂C的仰角分別是15°和60°,在樓頂A處測得對塔頂C的仰角為30°,則通信塔CD的高為______m.16.把“五進制”數轉化為“十進制”數是_____________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某校高一年級有學生480名,對他們進行政治面貌和性別的調查,其結果如下:性別團員群眾男80女180(1)若隨機抽取一人,是團員的概率為,求,;(2)在團員學生中,按性別用分層抽樣的方法,抽取一個樣本容量為5的樣本,然后在這5名團員中任選2人,求兩人中至多有1個女生的概率.18.一個盒子中裝有4張卡片,每張卡片上寫有1個數字,數字分別是1、2、3、4,現從盒子中隨機抽取卡片.(Ⅰ)若一次從中隨機抽取3張卡片,求3張卡片上數字之和大于或等于7的概率;(Ⅱ)若第一次隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數字2的概率.19.在凸四邊形中,.(1)若,,,求的大小.(2)若,且,求四邊形的面積.20.如圖,在三棱錐中,分別為棱上的中點.(1)求證:平面;(2)若平面,求證:平面平面.21.(1)已知,求的值(2)若,,且,,求的值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用平面向量加法和減法的運算,求得的線性表示.【詳解】依題意,即,故選C.【點睛】本小題主要考查平面向量加法和減法的運算,屬于基礎題.2、D【解析】

在同一直角坐標系下,分別作出與的圖象,結合函數圖象即可求解.【詳解】解:由題意知:函數在上零點個數,等價于與的圖象在同一直角坐標系下交點的個數,作圖如下:由圖可知:函數在上有個零點.故選:D【點睛】本題考查函數的零點的知識,考查數形結合思想,屬于中檔題.3、C【解析】

直接運用斜率計算公式求解.【詳解】因為直線過兩點,,所以直線的斜率,故本題選C.【點睛】本題考查了斜率的計算公式,考查了數學運算能力、識記公式的能力.4、D【解析】

由三角函數圖像可得,,再結合三角函數圖像的性質逐一判斷即可得解.【詳解】解:由函數的部分圖象可得,,即,則,又函數圖像過點,則,即,又,即,即,則對于選項A,顯然錯誤;對于選項B,函數的圖像關于直線對稱,即B錯誤;對于選項C,函數的圖像關于點對稱,即C錯誤;對于選項D,函數的增區間為,函數的增區間為,又,,即D正確,故選:D.【點睛】本題考查了利用三角函數圖像求函數解析式,重點考查了三角函數圖像的性質,屬中檔題.5、B【解析】

要計算長方體的外接球表面積就是要求出外接球的半徑,根據長方體的對角線是外接球的直徑這一性質,就可以求出外接球的表面積,分類討論:(1)長寬的兩個面重合;(2)長高的兩個面重合;(3)高寬兩個面重合,分別計算出新長方體的對角線,然后分別計算出外接球的表面積,最后通過比較即可求出最大值.【詳解】(1)當長寬的兩個面重合,新的長方體的長為5,寬為4,高為6,對角線長為:,所以大長方體的外接球表面積為;(2)當長高兩個面重合,新的長方體的長5,寬為8,高為3,對角線長為:,所以大長方體的外接球表面積為;(3)當寬高兩個面重合,新的長方體的長為10,寬為4,高為3,對角線長為:,所以大長方體的外接球表面積為,顯然大長方體的外接球表面積的最大值為,故本題選B.【點睛】本題考查了長方體外接球的半徑的求法,考查了分類討論思想,考查了球的表面積計算公式,考查了數學運算能力.6、B【解析】

函數表示圓位于x軸下面的部分。利用點到直線的距離公式,求出最小值。【詳解】函數化簡得。圓心坐標,半徑為2.所以【點睛】本題考查點到直線的距離公式,屬于基礎題。7、D【解析】

根據正弦定理,得到,進而得到,再由兩角和的正弦公式,即可得出結果.【詳解】因為,所以,所以,即,所以,又因此,所以,即三角形為直角三角形.故選D【點睛】本題主要考查三角形形狀的判斷,熟記正弦定理即可,屬于常考題型.8、C【解析】

利用二倍角公式化簡已知表達式,利用余弦定理化角為邊的關系,即可推出三角形的形狀.【詳解】解:因為,所以,即,由余弦定理可知:,所以.所以三角形是直角三角形.故選:.【點睛】本題考查三角形的形狀的判斷,余弦定理的應用,考查計算能力,屬于中檔題.9、C【解析】

設與的夾角為,計算出、、的值,再利用公式結合角的取值范圍可求出的值.【詳解】設與的夾角為,則,,,另一方面,,,,因此,,,因此,,故選C.【點睛】本題考查利用平面向量的數量積計算平面向量的夾角,解題的關鍵就是計算出、、的值,考查計算能力,屬于中等題.10、A【解析】以為坐標原點,建立平面直角坐標系,如圖所示,則,,,即,所以,,因此,因為,所以的最大值等于,當,即時取等號.考點:1、平面向量數量積;2、基本不等式.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由圓上有兩個點到直線的距離為3,先求出圓心到直線的距離,得到不等關系式,即可求解.【詳解】由題意,圓的圓心坐標為,半徑為,則圓心到直線的距離為,又因為圓上有兩個點到直線的距離為3,則,解得,即圓的半徑的取值范圍是.【點睛】本題主要考查了直線與圓的位置關系的應用,其中解答中合理應用圓心到直線的距離,結合圖象得到半徑的不等關系式是解答的關鍵,著重考查了數形結合思想,以及推理與運算能力,屬于中檔試題.12、【解析】

根據三角形面積公式和余弦定理可得,從而求得;由角的范圍可確定角的取值.【詳解】故答案為:【點睛】本題考查余弦定理和三角形面積公式的應用問題,關鍵是能夠配湊出符合余弦定理的形式,進而得到所求角的三角函數值.13、0【解析】

畫出可行域,分析目標函數得,當在y軸上截距最小時,即可求出的最小值.【詳解】作出可行域如圖:聯立得化目標函數為,由圖可知,當直線過點時,在y軸上的截距最小,有最小值為,故填.【點睛】本題主要考查了簡單的線性規劃,屬于中檔題.14、【解析】

設滾動后圓的圓心為C,切點為A,連接CP.過C作與x軸正方向平行的射線,交圓C于B(2,1),設∠BCP=θ,則根據圓的參數方程,得P的坐標為(1+cosθ,1+sinθ),再根據圓的圓心從(0,1)滾動到(1,1),算出,結合三角函數的誘導公式,化簡可得P的坐標為,即為向量的坐標.【詳解】設滾動后的圓的圓心為C,切點為,連接CP,過C作與x軸正方向平行的射線,交圓C于,設,∵C的方程為,∴根據圓的參數方程,得P的坐標為,∵單位圓的圓心的初始位置在,圓滾動到圓心位于,,可得,可得,,代入上面所得的式子,得到P的坐標為,所以的坐標是.故答案為:.【點睛】本題考查圓的參數方程,平面向量坐標表示的應用,解題的關鍵是根據數形結合找到變量的角度,屬于中等題.15、60【解析】

由已知可以求出、、的大小,在中,利用銳角三角函數,可以求出.在中,運用正弦定理,可以求出.在中,利用銳角三角函數,求出.【詳解】由題意可知:,,由三角形內角和定理可知.在中,.在中,由正弦定理可知:,在中,.【點睛】本題考查了銳角三角函數、正弦定理,考查了數學運算能力.16、194【解析】由.故答案為:194.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】

(1)隨機抽取一人,是團員的概率為,得,再由總人數為480得的另一個關系式,聯立求解,即可得出結論;(2)根據團員男女生人數的比例,可求出抽取一個樣本容量為5的樣本,男生為2人,女生為3人,將5人編號,列出從5人中抽取2人的所有基本事件,求出至多有1個女生的基本事件的個數,按古典概型求概率,即可求解.【詳解】解:(1)由題意得:,解得,.(2)在團員學生中,按性別用分層抽樣的方法,抽取一個樣本容量為5的樣本,抽中男生:人,抽中女生:人,2名男生記為,3名女生記為,在這5名團員中任選2人,基本事件有:共有10個基本事件,兩人中至多有1個女生包含的基本事件個數有7個,∴兩人中至多有1個女生的概率.【點睛】本題考查分層抽樣抽取元素個數的分配,考查古典概型的概率,屬于基礎題.18、(1)(2)【解析】

古典概型要求能夠列舉出所有事件和發生事件的個數,本題可以列舉出所有事件,概率問題同其他的知識點結合在一起,實際上是以概率問題為載體,主要考查的是另一個知識點(1)由題意知本題是一個古典概型,試驗包含的所有事件是任取三張卡片,三張卡片上的數字全部可能的結果,可以列舉出,而滿足條件的事件數字之和大于7的,可以從列舉出的結果中看出.(2)列舉出每次抽1張,連續抽取兩張全部可能的基本結果,而滿足條件的事件是兩次抽取中至少一次抽到數字3,從前面列舉出的結果中找出來.解:(Ⅰ)設A表示事件“抽取3張卡片上的數字之和大于或等于7”,任取三張卡片,三張卡片上的數字全部可能的結果是(1、2、3),(1、2、4),(1、3、4),(2、3、4),共4種,數字之和大于或等于7的是(1、2、4),(1、3、4),(2、3、4),共3種,所以P(A)=.(Ⅱ)設B表示事件“至少一次抽到2”,第一次抽1張,放回后再抽取1張的全部可能結果為:(1、1)(1、2)(1、3)(1、4)(2、1)(2、2)(2、3)(2、4)(3、1)(3、2)(3、3)(3、4)(4、1)(4、2)(4、3)(4、4),共16個事件B包含的結果有(1、2)(2、1)(2、2)(2、3)(2、4)(3、2)(4、2),共7個所以所求事件的概率為P(B)=.19、(1);(2)【解析】

(1)在中利用余弦定理可求得,從而可知,求得;在中利用正弦定理求得結果;(2)在中利用余弦定理和可表示出;在中利用余弦定理可得,從而構造出關于的方程,結合和為銳角可求得;根據化簡求值可得到結果.【詳解】(1)連接在中,,,由余弦定理得:,則在中,由正弦定理得:,解得:(2)連接在中,由余弦定理得:又在中,由余弦定理得:,即又為銳角,則四邊形面積:【點睛】本題考查解三角形的相關知識,涉及到正弦定理、余弦定理解三角形、三角形面積公式的應用;關鍵是能夠利用余弦定理構造出關于角的正余弦值的方程,結合同角三角函數的平方關系構造方程可求得三角函數值;易錯點是忽略角的范圍,造成求解錯誤.20、(1)證明見解析;(2)證明見解析.【解析】

(1)根據線面平行的判定定理,在平面中找的平行線,轉化為線線平行的證明;(2)根據面面垂直的判定定理,轉化為平面.【詳解】(1),分別是,的中點,;又平面,平面,平面.(2),,;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論