




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
國家公務員數量關系專題練習第一部分單選題(200題)1、5,4,10,8,15,16,(),()
A、20,18
B、18,32
C、20,32
D、18,36
【答案】:答案:C
解析:從題干中給出的數字不難看出,奇數項5,10,15,(20)構成公差為5的等差數列,偶數項4,8,16,(32)構成公比為2的等比數列。故選C。2、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:數列是公比為6的等比數列,則所求項為216×6=1296(也可用尾數法,尾數為6)。故選A。3、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。4、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。5、2,3,13,175,()
A、30625
B、30651
C、30759
D、30952
【答案】:答案:B
解析:第一項乘以2,然后加第二項的平方等于第三項。2×2+3×3=13。第二項乘以2,然后加第三項的平方等于第四項。3×2+13×13=175。第三項乘以2,然后加第四項的平方等于第五項。13×2+175×175=30651。故選B。6、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。7、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。8、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。9、某單位組織工會活動,30名員工自愿參加做游戲。游戲規則:按1~30號編號并報數,第一次報數后,單號全部站出來,然后每次余下的人中第一個開始站出來,隔一人站出來一個人。最后站出來的人給大家唱首歌。那么給大家唱歌的員工編號是()。
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次報數后,單號全部站出來,剩余號碼為2、4、6、8、10······30,均為2的倍數;每次余下的人中第一個開始站出來,隔一人站出來一個人,剩余號碼為4、8、12、16、20、24、28,均為4的倍數;再從余下的號碼中第一個人開始站出來,隔一個人站出來一個人,剩余號碼為8、16、24,均為8的倍數;重復上一次的步驟,剩余16號,為16的倍數。1—30中16的倍數只有16。故選B。10、有一支參加閱兵的隊伍正在進行訓練,這支隊伍的人數是5的倍數且不少于1000人,如果按每橫排4人編隊,最后少3人,如果按每橫排3人編隊,最后少2人;如果按每橫排2人編隊,最后少1人。請問,這支隊伍最少有多少人?()
A、1045
B、1125
C、1235
D、1345
【答案】:答案:A
解析:問最少,由小到大代入選項:代入A選項,(1045+3)能被4整除;(1045+2)能被3整除;(1045+1)能被2整除,滿足題意。故選A。11、2,3,1,2,6,7,()
A、9
B、5
C、11
D、24
【答案】:答案:B
解析:依次將相隔兩項做和2+1=3、3+2=5、1+6=7、2+7=9,是公差為2的等差數列。即所填數字為(9+2)-6=5。故選B。12、0,6,24,60,()
A、70
B、80
C、100
D、120
【答案】:答案:D
解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故選D。13、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。14、在列車平行軌道上,甲、乙兩列火車相對開來。甲列火車長236米,每秒行38米;乙列火車長275米,已知這兩列火車錯車開過用了7秒鐘,則乙列火車按這個速度通過長為2000米的隧道需要()秒鐘。
A、65
B、70
C、75
D、80
【答案】:答案:A
解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,選A。15、133/256,125/64,117/16,()
A、109/4
B、103/2
C、109/6
D、115/8
【答案】:答案:A
解析:分子133、125、117、(109)是公差為-8的等差數列,分母256、64、16、(4)是公比為1/4的等比數列。故選A。16、甲乙兩車早上分別同時從A、B兩地出發駛向對方所在城市,在分別到達對方城市并各自花費1小時卸貨后,立刻出發以原速返回出發地。甲車的速度為60千米/小時,乙車的速度為40千米/小時,兩地之間相距480千米。問兩車第二次相遇距離兩車早上出發經過了多少個小時?()
A、13.4
B、14.4
C、15.4
D、16.4
【答案】:答案:C
解析:根據“分別同時從A.B兩地出發”、“兩車第二次相遇”,可知考查的是兩端出發的多次相遇問題,公式為(v1+v2)t=(2n-1)S。代入數據得(60+40)t=(2×2-1)×480,解得t=14.4,由“各自花費一小時卸貨”,故經過了14.4+1=15.4小時。故選C。17、玉米的正常市場價格為每公斤1.86元到2.18元,近期某地玉米價格漲至每公斤2.68元。經測算,向市場每投放儲備玉米100噸,每公斤玉米價格下降0.05元。為穩定玉米價格,向該地投放儲備玉米的數量不能超過()。
A、800噸
B、1080噸
C、1360噸
D、1640噸
【答案】:答案:D
解析:要穩定玉米價格,玉米的價格必須調整至正常區間。所以最低下降為每公斤1.86元,即下降了2.68-1.86=0.82(元)。因為每投放100噸,價格下降0.05元,所以投放玉米的數量不能超過0.82÷0.05×100=1640(噸)。故選D。18、1,10,26,75,196,()
A、380
B、425
C、520
D、612
【答案】:答案:C
解析:第一步相差,得到9,16,49,121,明顯是平方,分別是3,4,7,11的平方,發現都是第一項+第二項=第三項,所以下一個差值是(7+11)的平方,也就是18的平方,而下個數就應該是196+18的平方等于520。故選C。19、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。20、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原數列可以寫成1×2,3×4,5×8,7×16,前一個乘數數列為1,3,5,7,是等差數列,下一項是9,后一個乘數數列為2,4,8,16,是等比數列,下一項是32,所以原數列空缺項為9×32=288。故選C。21、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。22、某收藏家有三個古董鐘,時針都掉了,只剩下分針,而且都走得較快,每小時分別快2分鐘、6分鐘及12分鐘。如果在中午將這三個鐘的分針都調整指向鐘面的12點位置,多少小時后這3個鐘的分針會指在相同的分鐘位置?
A.24
B.26
C.28
D.30
【答案】:答案:D
解析:由題意可得:假設每小時快2分鐘、快6分鐘、快12分鐘的古董鐘分別為A鐘、B鐘、C鐘,則B鐘與A鐘速度差為分鐘/小時,已知整個鐘盤有60分鐘,即經過小時,B鐘的分針比A鐘的分針恰好多走一圈,且此時兩鐘分針重合,同理,C鐘與A鐘速度差為分鐘/小時,即經過小時,C鐘的分針比A鐘的分針恰好多走一圈,此時兩鐘分針重合,取6和15的最小公倍數30,即經過30小時,B鐘的分針比A鐘的分針恰好多走2圈,C鐘的分針比A鐘的分針恰好多走5圈,且此時三個分針處于同一個位置。故正確答案為D。23、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N項=第N-1項+…+第一項,即所填數字為1+2+3+6+12+24=48。故選A。24、2,7,13,20,25,31,()
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得5,6,7,5,6,為(5,6,7)三個數字組成的循環數列,即所填數字為31+7=38。故選D。25、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。26、一只天平有7克、2克砝碼各一個,如果需要將140克的鹽分成50克、90克各一份,至少要稱幾次?()
A、六
B、五
C、四
D、三
【答案】:答案:D
解析:第一步,用天平將140g分成兩份,每份70g;第二步,將其中的一份70g,平均分成兩份35g;第三步,將砝碼分別放在天平的兩邊,將35g鹽放在天平兩邊至平衡,則每邊為(35+7+2)÷2=22g,則砝碼為2g的一邊,鹽就為20g,將其與第一步剩下的70g鹽混合,得到90g,剩下的就是50g。即一共稱了三次。故選D。27、-7,0,1,2,9,()
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故選D。28、甲和乙兩個公司2014年的營業額相同。2015年乙公司受店鋪改造工程影響,營業額比上年下降300萬元。而甲公司則引入電商業務,營業額比上年增長600萬元,正好是乙公司2015年營業額的3倍。則2014年兩家公司的營業額之和為多少萬元?()
A.900
B.1200
C.1500
D.1800
【答案】:答案:C
解析:設2014年兩家公司營業額為x萬元,由題意可得萬元,則2014年兩家公司營業額為故正確答案為C。29、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()
A、7個
B、8個
C、9個
D、10個
【答案】:答案:C
解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。30、90,85,81,78,()
A、75
B、74
C、76
D、73
【答案】:答案:C
解析:后項減去前項,可得-5、-4、-3、(-2),這是一個公差為1的等差數列,所以下一項為78-2=76。故選C。31、A地到B地的道路是下坡路。小周早上6:00從A地出發勻速騎車前往B地,7:00時到達兩地正中間的C地。到達B地后,小周立即勻速騎車返回,在10:00時又途經C地。此后小周的速度在此前速度的基礎上增加1米/秒。最后在11:30回到A地。問A、B兩地間的距離在以下哪個范圍內?
A.40~50公里
B.大于50公里
C.小于30公里
D.30~40公里
【答案】:答案:A
解析:設小周下坡速度為,上坡速度為。根據條件分析可列下表:在上坡階段B→C=C→A,可得,解得=3m/s,根據1m/s=3600m/h,因此。故正確答案為A。32、在列車平行軌道上,甲、乙兩列火車相對開來。甲列火車長236米,每秒行38米;乙列火車長275米,已知這兩列火車錯車開過用了7秒鐘,則乙列火車按這個速度通過長為2000米的隧道需要()秒鐘。
A、65
B、70
C、75
D、80
【答案】:答案:A
解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,選A。33、某人租下一店面準備賣服裝,房租每月1萬元,重新裝修花費10萬元。從租下店面到開始營業花費3個月時間。開始營業后第一個月,扣除所有費用后的純利潤為3萬元。如每月純利潤都比上月增加2000元而成本不變,問該店在租下店面后第幾個月內收回投資?()
A、7
B、8
C、9
D、10
【答案】:答案:A
解析:由題意可得租下店面前3個月成本為1×3+10=13(萬元),租下店面第4個月開始營業,營業后各月獲得的純利潤構成首項為3萬元、公差為0.2萬元的等差數列:3萬元、3.2萬元、3.4萬元、3.6萬元。由3+3.2+3.4+3.6=13.2>13,即第7個月收回投資。故選A。34、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:兩兩分組得到(41,59),(32,68),(72,()),發現組內做和均為100。故選A。35、小王登山,上山的速度是4km/h,到達山頂后原路返回,速度為6km/h,設山路長為9km,小王的平均速度為()km/h。
A、5
B、4.8
C、4.6
D、4.4
【答案】:答案:B
解析:平均速度為總路程除以總時間,即(2×9)÷(9÷4+9÷6)=4.8km/h。故選B。36、-3,-2,5,24,61,()
A、122
B、156
C、240
D、348
【答案】:答案:A
解析:相鄰兩項逐差:因此,未知項=61+61=122。故選A。37、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。38、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。39、1,1,2,6,24,()
A、11
B、50
C、80
D、120
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數除以前一個數得1,2,3,4,為連續自然數列,即所填數字為24×5=120。故選D。40、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:數列可化為4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后項為4/10=2/5。故選C。41、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。42、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。43、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每項變成漢字為一、十、三、五、十三的筆畫數1,2,3,4,5等差。故選C。44、2,7,13,20,25,31,()
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得5,6,7,5,6,為(5,6,7)三個數字組成的循環數列,即所填數字為31+7=38。故選D。45、有一個五位數,左邊的三位數比右邊的兩位數的4倍還多4,如果把右邊兩位數移到最前面,新的五位數比原來的2倍還多11122,則原來的五位數是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位數問題考慮用代入排除法解題。代入A選項,180=44×4+4,但44180≠18044×2+11122,不符合題意,排除;代入B選項,240=59×4+4,59240=24059×2+11122,符合題意,正確。故選B。46、3,10,31,94,(),850
A、250
B、270
C、282
D、283
【答案】:答案:D
解析:10=3×3+1,31=10×3+1,94=31×3+1,每一項等于前一項乘以3加上1,即所填數字為94×3+1=283。故選D。47、超市有一批酒需要入庫,單獨干這項工作,小明需要15小時,小軍需要18小時。如果小明和小軍一起干了5小時后,剩下的由小軍獨自完成,若這時小軍的效率提高40%,則還需要幾小時才能完成?()
A、5
B、17
C、12
D、11
【答案】:答案:A
解析:設總工作量為90,則小明的效率為6,小軍的效率為5。開始時兩人合作了5個小時,共完成工作量(6+5)×5=55,還剩90-55=35。這時小軍的效率為5×(1+40%)=7,剩下的工作小軍還需35÷7=5小時才能完成。故選A。48、某班一次數學測試,全班平均91分,其中男生平均88分,女生平均93分,則女生人數是男生人數的多少倍?()
A、0.5
B、1
C、1.5
D、2
【答案】:答案:C
解析:設男生、女生人數分別為x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故選C。49、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相鄰兩項后一項除以前一項的商構成連續的質數列,即所填數字為210×11=2310。故選B。50、22×32×42×52值為多少?()
A、1437536
B、1527536
C、1436536
D、1537536
【答案】:答案:D
解析:原式中42是3的倍數,則原式結果應能被3整除。選項中只有D能被3整除。故選D。51、3,30,129,348,()
A、532
B、621
C、656
D、735
【答案】:答案:D
解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底數1、3、5、7構成連續的奇數列,另一部分2、3、4、5是連續的自然數,即所填數字為93+6=735。故選D。52、2,2,6,14,34,()
A、82
B、50
C、48
D、62
【答案】:答案:A
解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故選A。53、甲、乙、丙三輛汽車分別從A地開往千里之外的B地。若乙比甲晚出發30分鐘,則乙出發后2小時追上甲;若丙比乙晚出發20分鐘,則丙出發后5小時追上乙。若甲出發10分鐘后乙出發,當乙追上甲時,丙才出發,則丙追上甲所需時間是()。
A、110分鐘
B、150分鐘
C、127分鐘
D、128分鐘
【答案】:答案:B
解析:設甲、乙、丙三輛汽車的速度分別為x、y、z。由于甲行駛30分鐘的路程,乙需要2小時才能追上,則30x=(y-x)×2×60,化簡得x∶y=4∶5。又因乙行駛20分鐘的路程,丙需要5小時才能追上,則20y=(z-y)×5×60,化簡得y∶z=15∶16。所以三輛汽車的速度x∶y∶z=12∶15∶16。賦值甲、乙、丙的速度分別為12、15、16,甲出發10分鐘后乙出發,則乙追上甲的時間為(分鐘),故丙出發時甲已經行駛10+40=50(分鐘),設丙追上甲所需時間是t分鐘,可得方程12×50=(16-12)×t,解得t=150。故選B。54、從1開始的第2009個奇數是()。
A、4011
B、4013
C、4015
D、4017
【答案】:答案:D
解析:因為每兩個相鄰的奇數均相差2,而第2009個奇數是第1個奇數1之后的第2008個奇數,那么第2009個奇數應該是1+2008×2=4017。故選D。55、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。56、7,7,16,42,107,()
A、274
B、173
C、327
D、231
【答案】:答案:D
解析:做一次差后得到數列:13-1,23+1,33-1,43+1,53-1。故選D。57、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。58、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。59、1/2,1,1,(),9/11,11/13
A、2
B、3
C、1
D、9
【答案】:答案:C
解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13連續質數列。故選C。60、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:兩兩分組得到(41,59),(32,68),(72,()),發現組內做和均為100。故選A。61、4/5,16/17,16/13,64/37,()
A、64/25
B、64/21
C、35/26
D、75/23
【答案】:答案:A
解析:已知數列可轉化為:8/10,16/17,32/26,64/37,(),分子8,16,32,64,()是公比為2的等比數列,分母10,17,26,37,()構成二級等差數列。故第五項的分子應是128,分母是50,約分后為64/25。故選A。62、0,3,18,33,68,95,()
A、145
B、148
C、150
D、153
【答案】:答案:C
解析:原數列寫為0=0×1,3=1×3,18=2×9,33=3×11,68=4×17,95=5×19,其中1,3,9,11,17,19構成的數列奇數項是等差數列,偶數項也是等差數列。故空缺處數字為6×25=150。故選C。63、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。64、2,3,7,22,155,()
A、2901
B、3151
C、3281
D、3411
【答案】:答案:D
解析:7=3×2+1,22=7×3+1,155=22×7+1,即所填數字為22×155+1=3411。故選D。65、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。66、2,17,29,38,44,()
A、45
B、46
C、47
D、48
【答案】:答案:C
解析:做差。第一次做差結果為15,12,9,6,所以后面一項為3,后面一項為47。故選C。67、5,10,20,(),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比為2的等比數列。故選B。68、一件商品相繼兩次分別按折扣率為10%和20%進行折扣,已知折扣后的售價為540元,那么折扣前的售價為()。
A、600元
B、680元
C、720元
D、750元
【答案】:答案:D
解析:設原售價為x元,利用“折扣后售價為540元”得x(1-10%)(1-20%)=540。解得x=750。故選D。69、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。70、一個人從家到公司,當他走到路程的一半的時候,速度下降了10%,問:他走完全程所用時間的前半段和后半段所走的路程比是()。
A、10:9
B、21:19
C、11:9
D、22:18
【答案】:答案:B
解析:設前半程速度為10,則后半程速度為9,路程總長為180,則前半程用時9,后半程用時10,總耗時19,一半為9.5。因此前半段時間走過的路程為90+9×(9.5-9)=94.5,后半段時間走過的路程為9×9.5=85.5。兩段路程之比為94.5:85.5=21:19。故選B。71、(1296-18)÷36的值是()。
A、20
B、35.5
C、19
D、36
【答案】:答案:B
解析:原式可轉化為1296÷36-18÷36=36-0.5=35.5。故選B。72、甲乙兩人需托運行李。托運收費標準為10kg以下6元/kg,超出10kg部分每公斤收費標準略低一些。已知甲乙兩人托運費分別為109.5元、78元,甲的行李比乙重了50%。那么,超出10kg部分每公斤收費標準比10kg以內的低了()元。
A.1.5
B.2.5
C.3.5
D.4.5
【答案】:答案:A
解析:解析一:分段計費問題,設乙的行李超出的重量為x,即乙的行李總重量為10+x,則甲的行李重量為1.5×(10+x)。所以計算超出部分的重量為1.5×(10+x)-10=5+1.5x,超出金額為49.5元,所以按照比例,乙的行李超出了重量x,超出金額為18元,得到,解得x=4,所以超出部分單價為18÷4=4.5元。所以超出10公斤部分每公斤收費標準比10公斤以內的低了6-4.5=1.5元。解析二:盈虧思路,由于甲的行李重量比乙的多50%,所以分段看,乙超出部分為18元,所以對應的多50%的重量,應該是27元。則從甲超出的49.5元中扣除27元,還剩22.5元,這個錢數應該對應著10公斤的50%,即5公斤22.5元。所以每公斤超出部分為4.5元,超出10公斤部分每公斤收費標準比10公斤以內的低了6-4.5=1.5,得解。故正確答案為A。速解:靠常識解決,題目中說“超出10公斤部分每公斤收費標準略低一些。”所以選稍微低一點的73、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。74、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。75、四人年齡為相鄰的自然數列且最年長者不超過30歲,四人年齡之乘積能被2700整除且不能被81整除。則四人中最年長者多少歲?()
A、30
B、29
C、28
D、27
【答案】:答案:C
解析:結合最年長者,優先從選項最大值代入:A選項:30×29×28×27,尾數只有一個0,不能被2700整除,排除;B選項:29×28×27×26,尾數不為0,不能被2700整除,排除;C選項:28×27×26×25=(4×7)×27×26×25,能被2700整除,不能被81整除,正確。故選C。76、在某企業,40%的員工有至少3年的工齡,16個員工有至少8年的工齡。如果90%的員工的工齡不足8年,則工齡至少3年但不足8年的員工有()人。
A、48
B、64
C、80
D、144
【答案】:答案:A
解析:由于不足8年工齡的員工占90%,則至少8年工齡的員工占1-90%=10%,可得員工總數為16÷10%=160(人),故工齡至少3年但不足8年的員工有160×40%-16=48(人)。故選A。77、3,6,11,(),27
A、15
B、18
C、19
D、24
【答案】:答案:B
解析:相鄰兩項后一項減前一項,6-3=3,11-6=5,18-11=7,27-18=9,構成公差為2的等差數列。即所填數字為11+7=18,27-9=18。故選B。78、水面上有三艘同向行駛的輪船,其中甲船的時速為63公里,乙、丙兩船的時速均為60公里,但由于故障,丙船每連續行駛30分鐘后必須停船2分鐘。早上10點,三船到達同一位置,問1小時后,甲、丙兩船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小時內,甲船行駛了63公里,丙船最多停車4分鐘,即行駛56分鐘,行駛路程為56公里。故最多相距7公里。故選B。79、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。80、2,3,10,23,()
A、35
B、42
C、68
D、79
【答案】:答案:B
解析:相鄰兩項后一項減前一項,3-2=1,10-3=7,13-10=13,42-23=19,是一個公差為6的等差數列,即所填數字為23+19=42。故選B。81、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。82、某飲料店有純果汁(即濃度為100%)10千克,濃度為30%的濃縮還原果汁20千克。若取純果汁、濃縮還原果汁各10千克倒入10千克純凈水中,再倒入10千克的濃縮還原果汁,則得到的果汁濃度為多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根據題干可得,一共倒入純果汁(即濃度為100%)10千克,純凈水10千克,濃度為30%的濃縮還原果汁20千克。可知最終溶液的量為10+10+20=40(千克),最終溶質為10+20×30%=16(千克)。則最終果汁濃度=16÷40×100%=40%。故選A。83、張大伯賣白菜,開始定價是每千克5角錢,一點都賣不出去,后來每千克降低了幾分錢,全部白菜很快賣了出去,一共收入22.26元,則每千克降低了幾分錢?
A、3
B、4
C、6
D、8
【答案】:答案:D
解析:代入法,只有降8分時收入才能被價格整除。(2226=2×3×7×53=42×53)。故選D。84、7,9,-1,5,()
A、3
B、-3
C、2
D、-1
【答案】:答案:B
解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2等比。故選B。85、-3,-2,1,6,()
A、8
B、11
C、13
D、15
【答案】:答案:C
解析:相鄰兩項之差依次為1,3,5,(7),應填入13。故選C。86、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。87、接受采訪的100個大學生中,88人有手機,76人有電腦,其中有手機沒電腦的共15人,則這100個學生中有電腦但沒手機的共有多少人?()
A、25
B、15
C、5
D、3
【答案】:答案:D
解析:根據有手機沒電腦共15人,可得既有手機又有電腦(①部分)的人數為88-15=73人,則有電腦但沒手機(②部分)的人數為76-73=3人。故選D。88、0,1,3,10,()
A、101
B、102
C、103
D、104
【答案】:答案:B
解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一項)2+1=1(第二項)12+2=332+1=10102+2=102,其中所加的數呈1,2,1,2規律。思路三:各項除以3,取余數=>0,1,0,1,0,奇數項都能被3整除,偶數項除3余1。故選B。89、6,6,12,36,()
A、124
B、140
C、144
D、164
【答案】:答案:C
解析:兩兩相除。6/6=1,6/12=1/2,12/36=1/3,下個數為36/()=1/4。故選C。90、2,6,30,210,2310,()
A、30160
B、30030
C、40300
D、32160
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數除以前一個數得3,5,7,11,為一個質數數列,即所填數字為2310×13=30030。故選B。91、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。92、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。93、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。94、2/3,1/2,3/7,7/18,()
A、4/11
B、5/12
C、7/15
D、3/16
【答案】:答案:A
解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下來是8.分母是6、10、14、18,接下來是22。故選A。95、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各項減2后為質數列,故下一項為17+2=19。故選B。96、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。97、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是從小到大的質數和,所以下一個是31+37=68。故選C。98、學校舉行運動會,要求按照紅、黃、綠、紫的顏色插彩旗于校門口,請問第58面旗是什么顏色?()
A、黃
B、紅
C、綠
D、紫
【答案】:答案:A
解析:根據“按照紅、黃、綠、紫”可知,四個顏色為一個周期,則58÷4=14...2,故第58面旗是14個周期后的第二面,即為黃色。故選A。99、某飲料店有純果汁(即濃度為100%)10千克,濃度為30%的濃縮還原果汁20千克。若取純果汁、濃縮還原果汁各10千克倒入10千克純凈水中,再倒入10千克的濃縮還原果汁,則得到的果汁濃度為多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根據題干可得,一共倒入純果汁(即濃度為100%)10千克,純凈水10千克,濃度為30%的濃縮還原果汁20千克。可知最終溶液的量為10+10+20=40(千克),最終溶質為10+20×30%=16(千克)。則最終果汁濃度=16÷40×100%=40%。故選A。100、甲乙兩船從相距50千米的地方起航,船速不變。兩船在逆水中航行,甲航行100千米恰好趕上乙;如果兩船在順水中航行,那么甲追上乙需航行多遠?()
A、500千米
B、100~500千米
C、100千米
D、大于100千米
【答案】:答案:D
解析:不管是順水還是逆水,水速對兩船的影響是一樣的,影響追及時間產生的僅為兩船船速之差。因此無論逆水還是順水,追及時間相同,逆水時甲船追上乙船需航行100千米,而順水航行時速度大于逆水時的速度,航行距離應大于100千米。故選D。101、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。102、某農場有36臺收割機,要收割完所有的麥子需要14天時間。現收割了7天后增加4臺收割機,并通過技術改造使每臺機器的效率提升,問收割完所有的麥子還需要幾天。
A.3
B.4
C.5
D.6
【答案】:答案:D
解析:方法一:賦值法,賦值每臺收割機每天的工作效率為1,則工作總量為36×14,剩下的36×7由36+4=40臺收割機完成,技術改造后每臺收割機效率為,故剩下需要的時間為。方法二:比例法。由題意,原有收割機36臺,增加4臺后變為40臺,提高效率5%后相當于原先40×(1+5%)=42臺收割機的工作效率。效率比為6∶7,故所有時間比為7∶6,還需6天即可完成。故正確答案為D。103、大年三十彩燈懸,彩燈齊明光燦燦,三三數時能數盡,五五數時剩一盞,七七數時剛剛好,八八數時還缺三,請你自己算一算,彩燈至少有多少盞?()
A、21
B、27
C、36
D、42
【答案】:答案:A
解析:由三三數時能數盡、七七數時剛剛好可知,彩燈的數量能同時被3和7整除,排除B、C。又由五五數時剩一盞可知,彩燈的數量除以5余1,排除D。故選A。104、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。105、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數,構成公差為11的等差數列,即所填的數字為56+11=67。故選B。106、某商店花10000元進了一批商品,按期望獲得相當于進價25%的利潤來定價。結果只銷售了商品總量的30%。為盡快完成資金周轉,商店決定打折銷售,這樣賣完全部商品后,虧本1000元。問商店是按定價打幾折銷售的?()
A、九折
B、七五折
C、六折
D、四八折
【答案】:答案:C
解析:由只銷售了總量的30%知,打折前銷售額為10000×(1+25%)×30%=3750元;設此商品打x折出售,剩余商品打折后,銷售額為10000×(1+25%)×(1-30%)x=8750x。根據虧本1000元,可得3750+8750x-10000=﹣1000,解得x=0.6,即打六折。故選C。107、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。108、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。109、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后為12、14、16,是公差為2的等差數列,下一個應為18,原數列下一項為18+72=90。故選C。110、甲乙丙三人參加一項測試,三人的平均分為80,甲乙兩人的平均分為75,乙丙兩人的平均分為80,那么甲丙兩人的平均分為()。
A、70
B、75
C、80
D、85
【答案】:答案:D
解析:甲乙丙、甲乙的平均分分別為80、75,可知丙的分數大于80分;甲乙丙、乙丙的平均分分別為80、80,可知甲的分數為80分。則甲丙平均分大于80分。故選D。111、7,7,9,17,43,()
A、119
B、117
C、123
D、121
【答案】:答案:C
解析:依次將相鄰兩項做差得0,2,10,26,再次做差得2,6,18。構成一個公比為3的等比數列,即所填數字為43+26+18×3=123。故選C。112、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。113、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。114、6,3,5,13,2,63,()
A、-36
B、-37
C、-38
D、-39
【答案】:答案:B
解析:6×3-5=13,3×5-13=2,5×13-2=63,第四項=第一項×第二項-第三項,即所填數字為13×2-63=-37。故選B。115、某高速公路收費站對過往車輛的收費標準是:大型車30元/輛、中型車15元/輛、小型車10元/輛。某天,通過收費站的大型車與中型車的數量比是5∶6,中型車與小型車的數量比是4∶11,小型車的通行費總數比大型車的多270元,這天的收費總額是()。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型車的數量比為10∶12∶33。以10輛大型車、12輛中型車、33輛小型車為一組。每組小型車收費比大型車多33×10-10×30=30元。實際多270元,說明共通過了270÷30=9組。每組收費10×30+12×15+33×10=810元,收費總額為9×810=7290元。故選B。116、將所有由1、2、3、4組成且沒有重復數字的四位數,按從小到大的順序排列,則排在第12位的四位數是()。
A、3124
B、2341
C、2431
D、3142
【答案】:答案:C
解析:當千位數字是1時有=6種四位數,當千位數字是2時也有=6種四位數,因此排在第12位的就是千位數字為2的最大四位數,即2431。故選C。117、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。118、2,3,10,15,26,35,()
A、40
B、45
C、50
D、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,問號=7平方+1,問號=50。故選C。119、某商店以5元/斤的價格購入一批蔬菜,上午以8元/斤的價格賣出總進貨量的60%,中午以上午售出價的8折賣出總進貨量的20%,下午以中午售出價的一半賣出剩余貨量的一半,最后獲利210元。則該商店一共購入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:賦值購進的量為10斤,上午以8元/斤的價格賣出6斤,中午以6.4元/斤的價格賣出2斤,下午以3.2元/斤的價格賣出1斤,總收入=8×6+6.4×2+3.2×1=64元,總利潤=64-5×10=14元,實際購入(210/14)×10=150斤。故選B。120、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。121、甲、乙和丙三種不同濃度、不同規格的酒精溶液,每瓶重量分別為3公斤、7公斤和9公斤,如果將甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,得到的酒精濃度分別為50%,50%和60%。如果將三種酒精合各一瓶混合,得到的酒精中要加入多少公斤純凈水后,其濃度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,相當于兩瓶甲、兩瓶乙、兩瓶丙混合,前兩種濃度都是50%,所以只需要加入適量水使得乙丙混合濃度由60%變為50%即可。設加水x,可將濃度為60%的酒精溶液溶度變為50%,即,解得x=3.2(公斤)。此時甲乙,甲丙和乙丙溶液各一瓶混合后濃度必然為50%。若甲、乙和丙各一瓶混合時濃度仍然為50%,則需加水為(公斤)。故選C。122、6,9,10,14,17,21,27,()
A、28
B、29
C、30
D、31
【答案】:答案:C
解析:依次將奇數項做差得10-6=4、17-10=7、27-17=10,4、7、10構成公差為3的等差數列;又依次將偶數項做差得14-9=5、21-14=7,若加入9則5、7、9可構成公差為2的等差數列,即所填數字為21+9=30。故選C。123、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。124、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。125、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。126、8,6,-4,-54,()
A、-118
B、-192
C、-320
D、-304
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得-2,-10,-50,構成公比為5的等比數列,即所填數字為-54+(-250)=-304。故選D。127、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。128、1,3,10,37,()
A、112
B、144
C、148
D、158
【答案】:答案:B
解析:3=1×4-1;10=3×4-2;37=10×4-3;144=37×4-4。故選B。129、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。130、有一架天平,只有5克和30克的砝碼各一個。現在要用這架天平把300克味精平均分成3份,那么至少需要稱多少次?()
A、3次
B、4次
C、5次
D、6次
【答案】:答案:A
解析:第1次,用30克和5克砝碼稱出35克味精;第2次,再35克味精作為砝碼,和30克砝碼一起稱出65克味精,此時已稱出100克味精;第3次,用100克味精作為砝碼稱出100克味精,還剩100克。把300克味精平均分為3份。故“至少”需要3次。故選A。131、小張購買了2個蘋果、3根香蕉、4個面包和5塊蛋糕,共消費58元。如果四種商品的單價都是正整數且各不相同,則每塊蛋糕的價格最高可能為多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:設蘋果、香蕉、面包、蛋糕的單價分別為x、y、z、w,根據共消費58元,得2x+3y+4z+5w=58。代入排除,根據最高,優先從值最大的選項代入。D選項,當w=8時,可得2x+3y+4z=18,由2x、4z、18均為偶數,則3y為偶數,即y為偶數且小于6。當y=2,有2x+4z=12,即x+2z=6,均為正整數且各不相同,若z=1,則x=4,此時滿足題意。故選D。132、甲、乙、丙三輛汽車分別從A地開往千里之外的B地。若乙比甲晚出發30分鐘,則乙出發后2小時追上甲;若丙比乙晚出發20分鐘,則丙出發后5小時追上乙。若甲出發10分鐘后乙出發,當乙追上甲時,丙才出發,則丙追上甲所需時間是()。
A、110分鐘
B、150分鐘
C、127分鐘
D、128分鐘
【答案】:答案:B
解析:設甲、乙、丙三輛汽車的速度分別為x、y、z。由于甲行駛30分鐘的路程,乙需要2小時才能追上,則30x=(y-x)×2×60,化簡得x∶y=4∶5。又因乙行駛20分鐘的路程,丙需要5小時才能追上,則20y=(z-y)×5×60,化簡得y∶z=15∶16。所以三輛汽車的速度x∶y∶z=12∶15∶16。賦值甲、乙、丙的速度分別為12、15、16,甲出發10分鐘后乙出發,則乙追上甲的時間為(分鐘),故丙出發時甲已經行駛10+40=50(分鐘),設丙追上甲所需時間是t分鐘,可得方程12×50=(16-12)×t,解得t=150。故選B。133、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三項=第二項×2+第一項,99=41×2+17。故選B。134、三位評委為12名選手投票,每位評委分別都投出了7票,并且每位選手都有評委投票。得三票的選手直接晉級,得兩票的選手待定,得一票或無票的直接淘汰,則下列說法正確的是()。
A、晉級和待定的選手共6人
B、待定和淘汰的選手共7人
C、晉級的選手最多有5人
D、晉級比淘汰的選手少3人
【答案】:答案:D
解析:每位評委投了7票,那么這三位評委的選擇各包含了7位選手,畫出如下文氏圖。黑色部分代表三位評委都投票的選手,即晉級選手,記為A。陰影部分代表有兩位評委投票的選手,即待定選手,記為B。白色部分代表至多有一位評委投票的選手,即淘汰選手,記為C。D項正確,由容斥原理可知,A+B+C=12,(7+7+7)-B-2A=12,得到B+2A=9,C-A=3,即晉級選手比淘汰選手少3人。方法二:設晉級、待定、淘汰的數量分別為a、b、c,則a+b+c=12,3a+2b+c=3×7=21,得2a+b=9。A項錯誤,當a+b=6時,a=-1不成立。B項錯誤,b+c=7,則a=12-7=5,b=5-2×3=-1不可能;C項錯誤,a=5時,b=-1不可能;D項正確,c-a=3時,得2a+b=9成立。故選D。135、-7,0,1,2,9,()
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故選D。136、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小數點之前滿足規律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D兩項。小數點之后構成等比數列8,16,32,64,128,小數點之后的數超過三位取后兩位,所以未知項是160.28。故選A。137、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。138、187,259,448,583,754,()
A、847
B、862
C、915
D、944
【答案】:答案:B
解析:各項數字和均為16。故選B。139、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。140、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。141、1,2,9,64,()
A、250
B、425
C、625
D、650
【答案】:答案:C
解析:10,21,32,43,(54)=625。故選C。142、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本題為隔項遞推數列,存在關系:第三項=第二項-第一項,第五項=第四項-第三項,……因此未知項為9-6=3。故選C。143、97,95,92,87,()
A、81
B、79
C、74
D、66
【答案】:答案:B
解析:97+(-2)=95,95+(-3)=92,92+(-5)=87,數列中兩項之差形成的數列為-2,-3,-5,而(-2)+(-3)=(-5),后一項為前兩項之和,下一個數為(-3)+(-5)=(-8),即所填數字為87+(-8)=79。故選B。144、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。145、鋼鐵廠某年總產量的1/6為型鋼類,1/7為鋼板類,鋼管類的產量正好是型鋼和鋼板產量之差的14倍,而鋼絲的產量正好是鋼管和型鋼產量之和的一半,而其它產品共為3萬噸。問該鋼鐵廠當年的產量為多少萬噸?()
A、48
B、42
C、36
D、28
【答案】:答案:D
解析:假設總產量為,則型鋼類產量為,鋼板類產量為,鋼管類為,鋼絲的產量為,則,解得萬噸,則總產量萬噸。故正確答案為D。146、甲、乙、丙三名質檢員對一批依次編號為1~100的電腦進行質量檢測,每個人均從隨機序號開始,按順序往后檢測,如檢測到編號為100的電腦,則該質檢員的檢測工作結束。某一時刻,甲檢測了76臺電腦,乙檢測了61臺電腦,丙檢測了54臺電腦,則甲、乙、丙三人均檢測過的電腦至少有()臺。
A、12
B、15
C、16
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滌綸纖維在防霉地毯材料中的應用考核試卷
- 塑料鞋制造過程廢料處理與回收利用考核試卷
- 生物制藥過程中的質量控制實驗室建設與管理考核試卷
- 電視廣播信號加密與解密技術考核試卷
- 玻璃屋頂搭建考核試卷
- 電視芯片原理與系統集成考核試卷
- 皮革護理技能競賽策劃與實施考核試卷
- 陽泉職業技術學院《單片機技術與應用》2023-2024學年第二學期期末試卷
- 四川托普信息技術職業學院《建設用地管理》2023-2024學年第二學期期末試卷
- 徐州市九里區2024-2025學年四下數學期末復習檢測試題含解析
- 中國銀聯招聘筆試題庫2024
- 2024安徽制造業發展報告
- 四年級下冊道德與法治(教學設計+素材)第8課《這些東西哪里來》(第二課時)
- 高職旅游專業《旅行社經營管理》說課稿
- DB65-T 4785-2024 耕地質量等級調查評價技術規范
- 財務機器人開發與應用實戰 課件 任務5 E-mail人機交互自動化-2
- 2024年個人廉潔自律述職報告(三篇)
- 【華為】通信行業:華為下一代鐵路移動通信系統白皮書2023
- 小學家長會-做好孩子手機管理主題班會課件
- Python 程序設計智慧樹知到期末考試答案章節答案2024年四川師范大學
- 山東省技能大賽青島選拔賽-世賽選拔項目55樣題(3D數字游戲技術)
評論
0/150
提交評論