山西省太原市五育2024年中考數學模擬預測題含解析_第1頁
山西省太原市五育2024年中考數學模擬預測題含解析_第2頁
山西省太原市五育2024年中考數學模擬預測題含解析_第3頁
山西省太原市五育2024年中考數學模擬預測題含解析_第4頁
山西省太原市五育2024年中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省太原市五育2024年中考數學模擬預測題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,水平的講臺上放置的圓柱體筆筒和正方體粉筆盒,其左視圖是()A. B.C. D.2.如圖,已知直線AD是⊙O的切線,點A為切點,OD交⊙O于點B,點C在⊙O上,且∠ODA=36°,則∠ACB的度數為()A.54°B.36°C.30°D.27°3.某種商品的進價為800元,出售時標價為1200元,后來由于該商品積壓,商店準備打折銷售,但要保證利潤率不低于5%,則至多可打()A.6折 B.7折C.8折 D.9折4.如圖,點A所表示的數的絕對值是()A.3 B.﹣3 C. D.5.已知實數a<0,則下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>06.a的倒數是3,則a的值是()A. B.﹣ C.3 D.﹣37.如圖,已知l1∥l2,∠A=40°,∠1=60°,則∠2的度數為()A.40° B.60° C.80° D.100°8.如圖,在平面直角坐標系xOy中,△由△繞點P旋轉得到,則點P的坐標為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)9.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.10.下列圖形中,既是中心對稱,又是軸對稱的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知△ABC和△ADE均為等邊三角形,點OAC的中點,點D在A射線BO上,連接OE,EC,若AB=4,則OE的最小值為_____.12.如圖,在△ACB中,∠ACB=90°,點D為AB的中點,將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.若AC=6,BC=8,則DB1的長為________.13.分解因式:=____14.分解因式:=.15.如圖,在矩形ABCD中,E、F分別是AD、CD的中點,沿著BE將△ABE折疊,點A剛好落在BF上,若AB=2,則AD=________.16.如圖是由6個棱長均為1的正方體組成的幾何體,它的主視圖的面積為_____.三、解答題(共8題,共72分)17.(8分)已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2與x軸的交點B(2,0)(1)求a、b的值;(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;(3)動點P從點B出發沿x軸以每秒1個單位長的速度向左移動,設移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.18.(8分)在如圖的正方形網格中,每一個小正方形的邊長為1;格點三角形ABC(頂點是網格線交點的三角形)的頂點A、C的坐標分別是(-4,6)、(-1,4);請在圖中的網格平面內建立平面直角坐標系;請畫出△ABC關于x軸對稱的△A1B1C1;請在y軸上求作一點P,使△PB1C的周長最小,并直接寫出點P的坐標.19.(8分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關系,并說明理由.20.(8分)如圖,已知點D在反比例函數y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.(1)求反比例函數y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;(3)點E為x軸上點A右側的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數.21.(8分)解不等式組:,并求出該不等式組所有整數解的和.22.(10分)如圖,已知BD是△ABC的角平分線,點E、F分別在邊AB、BC上,ED∥BC,EF∥AC.求證:BE=CF.23.(12分)如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點A(﹣,2),B(n,﹣1).求直線與雙曲線的解析式.點P在x軸上,如果S△ABP=3,求點P的坐標.24.關于x的一元二次方程ax2+bx+1=1.(1)當b=a+2時,利用根的判別式判斷方程根的情況;(2)若方程有兩個相等的實數根,寫出一組滿足條件的a,b的值,并求此時方程的根.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據左視圖是從物體的左面看得到的視圖解答即可.【詳解】解:水平的講臺上放置的圓柱形筆筒和正方體形粉筆盒,其左視圖是一個含虛線的長方形,故選C.【點睛】本題考查的是幾何體的三視圖,左視圖是從物體的左面看得到的視圖.2、D【解析】解:∵AD為圓O的切線,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD與∠ACB都對,∴∠ACB=∠AOD=27°.故選D.3、B【解析】

設可打x折,則有1200×-800≥800×5%,解得x≥1.即最多打1折.故選B.【點睛】本題考查的是一元一次不等式的應用,解此類題目時注意利潤和折數,計算折數時注意要除以2.解答本題的關鍵是讀懂題意,求出打折之后的利潤,根據利潤率不低于5%,列不等式求解.4、A【解析】

根據負數的絕對值是其相反數解答即可.【詳解】|-3|=3,故選A.【點睛】此題考查絕對值問題,關鍵是根據負數的絕對值是其相反數解答.5、B【解析】A、a+3<0是隨機事件,故A錯誤;B、a﹣3<0是必然事件,故B正確;C、3a>0是不可能事件,故C錯誤;D、a3>0是隨機事件,故D錯誤;故選B.點睛:本題考查了隨機事件.解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件指一定條件下,一定不發生的事件.不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.6、A【解析】

根據倒數的定義進行解答即可.【詳解】∵a的倒數是3,∴3a=1,解得:a=.故選A.【點睛】本題考查的是倒數的定義,即乘積為1的兩個數叫互為倒數.7、D【解析】

根據兩直線平行,內錯角相等可得∠3=∠1,再根據三角形的一個外角等于與它不相鄰的兩個內角的和列式計算即可得解.【詳解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故選D.【點睛】本題考查了平行線的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質并準確識圖是解題的關鍵.8、B【解析】試題分析:根據網格結構,找出對應點連線的垂直平分線的交點即為旋轉中心.試題解析:由圖形可知,對應點的連線CC′、AA′的垂直平分線過點(0,-1),根據旋轉變換的性質,點(1,-1)即為旋轉中心.故旋轉中心坐標是P(1,-1)故選B.考點:坐標與圖形變化—旋轉.9、C【解析】

作MH⊥AC于H,如圖,根據正方形的性質得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據角平分線性質得BM=MH=,則AB=2+,于是利用正方形的性質得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了角平分線的性質和正方形的性質.10、C【解析】

根據中心對稱圖形,軸對稱圖形的定義進行判斷.【詳解】A、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、既是中心對稱圖形,又是軸對稱圖形,故本選項正確;D、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形,軸對稱圖形的判斷.關鍵是根據圖形自身的對稱性進行判斷.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

根據等邊三角形的性質可得OC=AC,∠ABD=30°,根據“SAS”可證△ABD≌△ACE,可得∠ACE=30°=∠ABD,當OE⊥EC時,OE的長度最小,根據直角三角形的性質可求OE的最小值.【詳解】解:∵△ABC的等邊三角形,點O是AC的中點,∴OC=AC,∠ABD=30°∵△ABC和△ADE均為等邊三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴∠ACE=30°=∠ABD當OE⊥EC時,OE的長度最小,∵∠OEC=90°,∠ACE=30°∴OE最小值=OC=AB=1,故答案為1【點睛】本題考查了全等三角形的判定和性質,等邊三角形的性質,熟練運用全等三角形的判定是本題的關鍵.12、2【解析】

根據勾股定理可以得出AB的長度,從而得知CD的長度,再根據旋轉的性質可知BC=B1C,從而可以得出答案.【詳解】∵在△ACB中,∠ACB=90°,AC=6,BC=8,∴,∵點D為AB的中點,∴,∵將△ACB繞點C按順時針方向旋轉,當CB經過點D時得到△A1CB1.∴CB1=BC=8,∴DB1=CB1-CD=8﹣5=2,故答案為:2.【點睛】本題考查的是勾股定理、直角三角形斜邊中點的性質和旋轉的性質,能夠根據勾股定理求出AB的長是解題的關鍵.13、x(y+2)(y-2)【解析】

原式提取x,再利用平方差公式分解即可.【詳解】原式=x(y2-4)=x(y+2)(y-2),故答案為x(y+2)(y-2).【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.14、a(a+2)(a-2)【解析】

15、【解析】如圖,連接EF,∵點E、點F是AD、DC的中點,∴AE=ED,CF=DF=CD=AB=1,由折疊的性質可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點睛:本題考查了翻折變換的知識,解答本題的關鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長,再利用勾股定理解答即可.16、1.【解析】

根據立體圖形畫出它的主視圖,再求出面積即可.【詳解】主視圖如圖所示,∵主視圖是由1個棱長均為1的正方體組成的幾何體,∴主視圖的面積為1×12=1.故答案為:1.【點睛】本題是簡單組合體的三視圖,主要考查了立體圖的左視圖,解本題的關鍵是畫出它的左視圖.三、解答題(共8題,共72分)17、(1)a=﹣;(2)﹣1<n<2;(3)滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.【解析】試題分析:(1)、根據題意求出點C的坐標,然后將點C和點B的坐標代入直線解析式求出a和b的值;(2)、根據題意可知點Q在點A和點B之間,從而求出n的取值范圍;(3)、本題需要分幾種情況分別來進行計算,即AC=P1C,P2A=P2C和AP3=AC三種情況分別進行計算得出t的值.試題解析:(1)、解:∵點C是直線l1:y=x+1與軸的交點,∴C(0,1),∵點C在直線l2上,∴b=1,∴直線l2的解析式為y=ax+1,∵點B在直線l2上,∴2a+1=0,∴a=﹣;(2)、解:由(1)知,l1的解析式為y=x+1,令y=0,∴x=﹣1,由圖象知,點Q在點A,B之間,∴﹣1<n<2(3)、解:如圖,∵△PAC是等腰三角形,∴①點x軸正半軸上時,當AC=P1C時,∵CO⊥x軸,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②當P2A=P2C時,易知點P2與O重合,∴BP2=OB=2,∴2÷1=2s,③點P在x軸負半軸時,AP3=AC,∵A(﹣1,0),C(0,1),∴AC=,∴AP3=,∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣)s,即:滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.點睛:本題主要考查的就是一次函數的性質、等腰三角形的性質和動點問題,解決這個問題的關鍵就是要能夠根據題意進行分類討論,從而得出答案.在解決一次函數和等腰三角形問題時,我們一定要根據等腰三角形的性質來進行分類討論,可以利用圓規來作出圖形,然后根據實際題目來求出答案.18、(1)(2)見解析;(3)P(0,2).【解析】分析:(1)根據A,C兩點的坐標即可建立平面直角坐標系.(2)分別作各點關于x軸的對稱點,依次連接即可.(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,即為所求.詳解:(1)(2)如圖所示:(3)作點C關于y軸的對稱點C′,連接B1C′交y軸于點P,則點P即為所求.設直線B1C′的解析式為y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴,解得:,∴直線AB2的解析式為:y=2x+2,∴當x=0時,y=2,∴P(0,2).點睛:本題主要考查軸對稱圖形的繪制和軸對稱的應用.19、(1)見解析;(1)見解析.【解析】

(1)由全等三角形的判定定理AAS證得結論.(1)由(1)中全等三角形的對應邊相等推知點E是邊DF的中點,∠1=∠1;根據角平分線的性質、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點E是AB邊的中點,∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點E是DF的中點,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.20、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點坐標可求得OA的長,再利用三角函數的定義可求得OC的長,可求得C、D點坐標,再利用待定系數法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.本題解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x軸,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,設直線AC關系式為y=kx+b,∵過A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如圖,連接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x軸,∴四邊形AEBD為平行四邊形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=41°.21、1【解析】

分別求出每一個不等式的解集,根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式組的解集為:﹣2<x≤3,所以所有整數解的和為:﹣1+0+1+2+3=1.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.22、證明見解析.【解析】試題分析:先利用平行四邊形性質證明DE=CF,再證明EB=ED,即可解決問題.試題解析:∵ED∥BC,EF∥AC,∴四邊形EFCD是平行四邊形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論