山東省臨清、高唐兩地2024年中考適應性考試數學試題含解析_第1頁
山東省臨清、高唐兩地2024年中考適應性考試數學試題含解析_第2頁
山東省臨清、高唐兩地2024年中考適應性考試數學試題含解析_第3頁
山東省臨清、高唐兩地2024年中考適應性考試數學試題含解析_第4頁
山東省臨清、高唐兩地2024年中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省臨清、高唐兩地2024年中考適應性考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.的一個有理化因式是()A. B. C. D.2.下列運算中,正確的是()A.(a3)2=a5 B.(﹣x)2÷x=﹣xC.a3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x63.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形4.已知矩形ABCD中,AB=3,BC=4,E為BC的中點,以點B為圓心,BA的長為半徑畫圓,交BC于點F,再以點C為圓心,CE的長為半徑畫圓,交CD于點G,則S1-S2=()A.6 B. C.12﹣π D.12﹣π5.下列幾何體中,俯視圖為三角形的是()A. B. C. D.6.若二次函數y=ax2+bx+c的x與y的部分對應值如下表:x﹣2﹣1012y830﹣10則拋物線的頂點坐標是()A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)7.下列各運算中,計算正確的是()A.a12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a?3a=6a28.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是()A. B. C. D.9.如圖,BC∥DE,若∠A=35°,∠E=60°,則∠C等于()A.60° B.35° C.25° D.20°10.函數與在同一坐標系中的大致圖象是()A、B、C、D、二、填空題(共7小題,每小題3分,滿分21分)11.如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點P在∠MON的內部,作PE⊥OM,PF⊥ON,垂足分別為點E、F,那么稱PE+PF的值為點P相對于∠MON的“點角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標系xOy中,點P在坐標平面內,且點P的橫坐標比縱坐標大2,對于∠xOy,滿足d(P,∠xOy)=10,點P的坐標是_____.12.如圖,已知O為△ABC內一點,點D、E分別在邊AB和AC上,且,DE∥BC,設、,那么______(用、表示).13.“五一勞動節”,王老師將全班分成六個小組開展社會實踐活動,活動結束后,隨機抽取一個小組進行匯報展示.第五組被抽到的概率是___.14.如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周長_____________cm.15.小蕓一家計劃去某城市旅行,需要做自由行的攻略,父母給她分配了一項任務:借助網絡評價選取該城市的一家餐廳用餐.小蕓根據家人的喜好,選擇了甲、乙、丙三家餐廳,對每家餐廳隨機選取了1000條網絡評價,統計如下:評價條數等級餐廳五星四星三星二星一星合計甲53821096129271000乙460187154169301000丙4863888113321000(說明:網上對于餐廳的綜合評價從高到低,依次為五星、四星、三星、二星和一星.)小蕓選擇在________(填"甲”、“乙"或“丙”)餐廳用餐,能獲得良好用餐體驗(即評價不低于四星)的可能性最大.16.計算:的結果是_____.17.如圖,在矩形ABCD中,AD=5,AB=4,E是BC上的一點,BE=3,DF⊥AE,垂足為F,則tan∠FDC=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,某高速公路建設中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.73).19.(5分)化簡:.20.(8分)解分式方程:-1=21.(10分)平面直角坐標系中(如圖),已知拋物線經過點和,與y軸相交于點C,頂點為P.(1)求這條拋物線的表達式和頂點P的坐標;(2)點E在拋物線的對稱軸上,且,求點E的坐標;(3)在(2)的條件下,記拋物線的對稱軸為直線MN,點Q在直線MN右側的拋物線上,,求點Q的坐標.22.(10分)一個不透明的袋子中裝有3個標號分別為1、2、3的完全相同的小球,隨機地摸出一個小球不放回,再隨機地摸出一個小球.采用樹狀圖或列表法列出兩次摸出小球出現的所有可能結果;求摸出的兩個小球號碼之和等于4的概率.23.(12分)如圖,中,,于,,為邊上一點.(1)當時,直接寫出,.(2)如圖1,當,時,連并延長交延長線于,求證:.(3)如圖2,連交于,當且時,求的值.24.(14分)某紡織廠生產的產品,原來每件出廠價為80元,成本為60元.由于在生產過程中平均每生產一件產品有0.5的污水排出,現在為了保護環境,需對污水凈化處理后再排出.已知每處理1污水的費用為2元,且每月排污設備損耗為8000元.設現在該廠每月生產產品x件,每月純利潤y元:(1)求出y與x的函數關系式.(純利潤=總收入-總支出)(2)當y=106000時,求該廠在這個月中生產產品的件數.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

找出原式的一個有理化因式即可.【詳解】的一個有理化因式是,故選B.【點睛】此題考查了分母有理化,熟練掌握有理化因式的取法是解本題的關鍵.2、D【解析】

根據同底數冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,逐項判定即可.【詳解】∵(a3)2=a6,∴選項A不符合題意;∵(-x)2÷x=x,∴選項B不符合題意;∵a3(-a)2=a5,∴選項C不符合題意;∵(-2x2)3=-8x6,∴選項D符合題意.故選D.【點睛】此題主要考查了同底數冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,要熟練掌握.3、D【解析】

根據全等三角形的性質可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【點睛】本題考查全等三角形的性質,兩三角形全等,其對應邊和對應角都相等.4、D【解析】

根據題意可得到CE=2,然后根據S1﹣S2=S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案【詳解】解:∵BC=4,E為BC的中點,∴CE=2,∴S1﹣S2=3×4﹣,故選D.【點睛】此題考查扇形面積的計算,矩形的性質及面積的計算.5、C【解析】

俯視圖是從上面所看到的圖形,可根據各幾何體的特點進行判斷.【詳解】A.圓錐的俯視圖是圓,中間有一點,故本選項不符合題意,B.幾何體的俯視圖是長方形,故本選項不符合題意,C.三棱柱的俯視圖是三角形,故本選項符合題意,D.圓臺的俯視圖是圓環,故本選項不符合題意,故選C.【點睛】此題主要考查了由幾何體判斷三視圖,正確把握觀察角度是解題關鍵.6、C【解析】分析:由表中所給數據,可求得二次函數解析式,則可求得其頂點坐標.詳解:當或時,,當時,,,解得,二次函數解析式為,拋物線的頂點坐標為,故選C.點睛:本題主要考查二次函數的性質,利用條件求得二次函數的解析式是解題的關鍵.7、D【解析】【分析】根據同底數冪的除法、積的乘方、完全平方公式、單項式乘法的法則逐項計算即可得.【詳解】A、原式=a9,故A選項錯誤,不符合題意;B、原式=27a6,故B選項錯誤,不符合題意;C、原式=a2﹣2ab+b2,故C選項錯誤,不符合題意;D、原式=6a2,故D選項正確,符合題意,故選D.【點睛】本題考查了同底數冪的除法、積的乘方、完全平方公式、單項式乘法等運算,熟練掌握各運算的運算法則是解本題的關鍵.8、D【解析】試題分析:A.是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項正確.故選D.考點:軸對稱圖形.9、C【解析】

先根據平行線的性質得出∠CBE=∠E=60°,再根據三角形的外角性質求出∠C的度數即可.【詳解】∵BC∥DE,∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE,∴∠C=∠CBE﹣∠C=60°﹣35°=25°,故選C.【點睛】本題考查了平行線的性質、三角形外角的性質,熟練掌握三角形外角的性質是解題的關鍵.10、D.【解析】試題分析:根據一次函數和反比例函數的性質,分k>0和k<0兩種情況討論:當k<0時,一次函數圖象過二、四、三象限,反比例函數中,-k>0,圖象分布在一、三象限;當k>0時,一次函數過一、三、四象限,反比例函數中,-k<0,圖象分布在二、四象限.故選D.考點:一次函數和反比例函數的圖象.二、填空題(共7小題,每小題3分,滿分21分)11、(6,4)或(﹣4,﹣6)【解析】

設點P的橫坐標為x,表示出縱坐標,然后列方程求出x,再求解即可.【詳解】解:設點P的橫坐標為x,則點P的縱坐標為x-2,由題意得,

當點P在第一象限時,x+x-2=10,

解得x=6,

∴x-2=4,

∴P(6,4);

當點P在第三象限時,-x-x+2=10,

解得x=-4,

∴x-2=-6,

∴P(-4,-6).

故答案為:(6,4)或(-4,-6).【點睛】本題主要考查了點的坐標,讀懂題目信息,理解“點角距離”的定義并列出方程是解題的關鍵.12、【解析】

根據,DE∥BC,結合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點睛】本題考查的知識點是平面向量,解題的關鍵是熟練的掌握平面向量.13、【解析】

根據概率是所求情況數與總情況數之比,可得答案.【詳解】因為共有六個小組,所以第五組被抽到的概率是,故答案為:.【點睛】本題考查了概率的知識.用到的知識點為:概率=所求情況數與總情況數之比.14、36.【解析】試題分析:∵△AFE和△ADE關于AE對稱,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長=8×2+10×2=36.考點:折疊的性質;矩形的性質;銳角三角函數;勾股定理.15、丙【解析】

不低于四星,即四星與五星的和居多為符合題意的餐廳.【詳解】不低于四星,即比較四星和五星的和,丙最多.故答案是:丙.【點睛】考查了可能性的大小和統計表.解題的關鍵是將問題轉化為比較四星和五星的和的多少.16、【解析】試題分析:先進行二次根式的化簡,然后合并同類二次根式即可,考點:二次根式的加減17、4【解析】

首先根據矩形的性質以及垂線的性質得到∠FDC=∠ABE,進而得出tan∠FDC=tan∠AEB=ABBE【詳解】∵DF⊥AE,垂足為F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=ABBE,∵在矩形ABCD中,AB=4,E是BC上的一點,BE=3,∴tan∠FDC=43.故答案為【點睛】本題主要考查了銳角三角函數的關系以及矩形的性質,根據已知得出tan∠FDC=tan∠AEB是解題關鍵.三、解答題(共7小題,滿分69分)18、簡答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的長約為635m.【解析】試題分析:首先過點C作CO⊥AB,根據Rt△AOC求出OA的長度,根據Rt△CBO求出OB的長度,然后進行計算.試題解析:如圖,過點C作CO⊥直線AB,垂足為O,則CO="1500m"∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA=1500tan60°=1500×3在Rt△CBO中,OB=1500×tan45°=1500m∴AB=1500-5003≈1500-865=635(m)答:隧道AB的長約為635m.考點:銳角三角函數的應用.19、【解析】

原式第一項利用完全平方公式化簡,第二項利用單項式乘多項式法則計算,去括號合并即可得到結果.【詳解】解:原式.20、7【解析】

根據分式的性質及等式的性質進行去分母,去括號,移項,合并同類項,未知數系數化為1即可.【詳解】-1=3-(x-3)=-13-x+3=-1x=7【點睛】此題主要考查分式方程的求解,解題的關鍵是正確去掉分母.21、(1),頂點P的坐標為;(2)E點坐標為;(3)Q點的坐標為.【解析】

(1)利用交點式寫出拋物線解析式,把一般式配成頂點式得到頂點P的坐標;(2)設,根據兩點間的距離公式,利用得到,然后解方程求出t即可得到E點坐標;(3)直線交軸于,作于,如圖,利用得到,設,則,再在中利用正切的定義得到,即,然后解方程求出m即可得到Q點坐標.【詳解】解:(1)拋物線解析式為,即,,頂點P的坐標為;(2)拋物線的對稱軸為直線,設,,,解得,E點坐標為;(3)直線交x軸于F,作MN⊥直線x=2于H,如圖,,而,,設,則,在中,,,整理得,解得(舍去),,Q點的坐標為.【點睛】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質和銳角三角函數的定義;會利用待定系數法求函數解析式;理解坐標與圖形性質,記住兩點間的距離公式.22、(1)見解析;(2).【解析】

(1)畫樹狀圖列舉出所有情況;

(2)讓摸出的兩個球號碼之和等于4的情況數除以總情況數即為所求的概率.【詳解】解:(1)根據題意,可以畫出如下的樹形圖:從樹形圖可以看出,兩次摸球出現的所有可能結果共有6種.(2)由樹狀圖知摸出的兩個小球號碼之和等于4的有2種結果,∴摸出的兩個小球號碼之和等于4的概率為=.【點睛】本題要查列表法與樹狀圖法求概率,列出樹狀圖得出所有等可能結果是解題關鍵.23、(1),;(2)證明見解析;(3).【解析】

(1)利用相似三角形的判定可得,列出比例式即可求出結論;(2)作交于,設,則,根據平行線分線段成比例定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論