天津市寧河縣2023-2024學年中考聯考數學試卷含解析_第1頁
天津市寧河縣2023-2024學年中考聯考數學試卷含解析_第2頁
天津市寧河縣2023-2024學年中考聯考數學試卷含解析_第3頁
天津市寧河縣2023-2024學年中考聯考數學試卷含解析_第4頁
天津市寧河縣2023-2024學年中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

天津市寧河縣2023-2024學年中考聯考數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.對于數據:6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數據的平均數是6,中位數是6 B.這組數據的平均數是6,中位數是7C.這組數據的平均數是5,中位數是6 D.這組數據的平均數是5,中位數是72.下列命題正確的是()A.內錯角相等B.-1是無理數C.1的立方根是±1D.兩角及一邊對應相等的兩個三角形全等3.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.4.已知m=,n=,則代數式的值為()A.3 B.3 C.5 D.95.如果零上2℃記作+2℃,那么零下3℃記作()A.-3℃ B.-2℃ C.+3℃ D.+2℃6.已知y關于x的函數圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<27.在一些美術字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A. B. C. D.8.2014年底,國務院召開了全國青少年校園足球工作會議,明確由教育部正式牽頭負責校園足球工作.2018年2月1日,教育部第三場新春系列發(fā)布會上,王登峰司長總結前三年的工作時提到:校園足球場地,目前全國校園里面有5萬多塊,到2020年要達到85000塊.其中85000用科學記數法可表示為()A.0.85105 B.8.5104 C.8510-3 D.8.510-49.如圖,點M是正方形ABCD邊CD上一點,連接MM,作DE⊥AM于點E,BF⊥AM于點F,連接BE,若AF=1,四邊形ABED的面積為6,則∠EBF的余弦值是()A. B. C. D.10.下列哪一個是假命題()A.五邊形外角和為360°B.切線垂直于經過切點的半徑C.(3,﹣2)關于y軸的對稱點為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=2二、填空題(共7小題,每小題3分,滿分21分)11.若點A(1,m)在反比例函數y=的圖象上,則m的值為________.12.設△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點O,△AOB的面積記為S2;…,依此類推,則Sn可表示為________.(用含n的代數式表示,其中n為正整數)13.如圖是一張長方形紙片ABCD,已知AB=8,AD=7,E為AB上一點,AE=5,現要剪下一張等腰三角形紙片(△AEP),使點P落在長方形ABCD的某一條邊上,則等腰三角形AEP的底邊長是_____________.14.不等式組的最大整數解是__________.15.如圖,已知正八邊形ABCDEFGH內部△ABE的面積為6cm1,則正八邊形ABCDEFGH面積為_____cm1.16.圖中是兩個全等的正五邊形,則∠α=______.17.如果2,那么=_____(用向量,表示向量).三、解答題(共7小題,滿分69分)18.(10分)如圖,已知A(﹣4,n),B(2,﹣4)是一次函數y=kx+b的圖象與反比例函數的圖象的兩個交點.(1)求反比例函數和一次函數的解析式;(2)求直線AB與x軸的交點C的坐標及△AOB的面積;(3)求方程的解集(請直接寫出答案).19.(5分)某校為了解學生的安全意識情況,在全校范圍內隨機抽取部分學生進行問卷調查,根據調查結果,把學生的安全意識分成“淡薄”、“一般”、“較強”、“很強”四個層次,并繪制成如下兩幅尚不完整的統計圖.根據以上信息,解答下列問題:(1)這次調查一共抽取了名學生,其中安全意識為“很強”的學生占被調查學生總數的百分比是;(2)請將條形統計圖補充完整;(3)該校有1800名學生,現要對安全意識為“淡薄”、“一般”的學生強化安全教育,根據調查結果,估計全校需要強化安全教育的學生約有名.20.(8分)如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.(1)求證:AE?FD=AF?EC;(2)求證:FC=FB;(3)若FB=FE=2,求⊙O的半徑r的長.21.(10分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經過點A,D的⊙O分別交AB,AC于點E,F,連接OF交AD于點G.求證:BC是⊙O的切線;設AB=x,AF=y,試用含x,y的代數式表示線段AD的長;若BE=8,sinB=,求DG的長,22.(10分)如圖,二次函數y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.(1)求二次函數的表達式;(2)當﹣<x<1時,請求出y的取值范圍;(3)連接AD,線段OC上有一點E,點E關于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標.23.(12分)如圖所示,平面直角坐標系中,O為坐標原點,二次函數的圖象與x軸交于、B兩點,與y軸交于點C;(1)求c與b的函數關系式;(2)點D為拋物線頂點,作拋物線對稱軸DE交x軸于點E,連接BC交DE于F,若AE=DF,求此二次函數解析式;(3)在(2)的條件下,點P為第四象限拋物線上一點,過P作DE的垂線交拋物線于點M,交DE于H,點Q為第三象限拋物線上一點,作于N,連接MN,且,當時,連接PC,求的值.24.(14分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數y=的圖象經過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經過的路徑長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據題目中的數據可以按照從小到大的順序排列,從而可以求得這組數據的平均數和中位數.【詳解】對于數據:6,3,4,7,6,0,1,這組數據按照從小到大排列是:0,3,4,6,6,7,1,這組數據的平均數是:中位數是6,故選C.【點睛】本題考查了平均數、中位數的求法,解決本題的關鍵是明確它們的意義才會計算,求平均數是用一組數據的和除以這組數據的個數;中位數的求法分兩種情況:把一組數據從小到大排成一列,正中間如果是一個數,這個數就是中位數,如果正中間是兩個數,那中位數是這兩個數的平均數.2、D【解析】解:A.兩直線平行,內錯角相等,故A錯誤;B.-1是有理數,故B錯誤;C.1的立方根是1,故C錯誤;D.兩角及一邊對應相等的兩個三角形全等,正確.故選D.3、D【解析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關鍵.4、B【解析】

由已知可得:,=.【詳解】由已知可得:,原式=故選:B【點睛】考核知識點:二次根式運算.配方是關鍵.5、A【解析】

一對具有相反意義的量中,先規(guī)定其中一個為正,則另一個就用負表示.【詳解】∵“正”和“負”相對,∴如果零上2℃記作+2℃,那么零下3℃記作-3℃.故選A.6、B【解析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.7、A【解析】

根據軸對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形;B、不是軸對稱圖形;C、不是軸對稱圖形;D、不是軸對稱圖形.故選:A.【點睛】本題考查的是軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、B【解析】

根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,等于這個數的整數位數減1.【詳解】解:85000用科學記數法可表示為8.5×104,

故選:B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、B【解析】

首先證明△ABF≌△DEA得到BF=AE;設AE=x,則BF=x,DE=AF=1,利用四邊形ABED的面積等于△ABE的面積與△ADE的面積之和得到?x?x+?x×1=6,解方程求出x得到AE=BF=3,則EF=x-1=2,然后利用勾股定理計算出BE,最后利用余弦的定義求解.【詳解】∵四邊形ABCD為正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于點E,BF⊥AM于點F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF和△DEA中∴△ABF≌△DEA(AAS),∴BF=AE;設AE=x,則BF=x,DE=AF=1,∵四邊形ABED的面積為6,∴,解得x1=3,x2=﹣4(舍去),∴EF=x﹣1=2,在Rt△BEF中,,∴.故選B.【點睛】本題考查了正方形的性質:正方形的四條邊都相等,四個角都是直角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質.會運用全等三角形的知識解決線段相等的問題.也考查了解直角三角形.10、C【解析】分析:根據每個選項所涉及的數學知識進行分析判斷即可.詳解:A選項中,“五邊形的外角和為360°”是真命題,故不能選A;B選項中,“切線垂直于經過切點的半徑”是真命題,故不能選B;C選項中,因為點(3,-2)關于y軸的對稱點的坐標是(-3,-2),所以該選項中的命題是假命題,所以可以選C;D選項中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質;(3)點P(a,b)關于y軸的對稱點為(-a,b);(4)拋物線的對稱軸是直線:等數學知識,是正確解答本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、3【解析】試題解析:把A(1,m)代入y=得:m=3.所以m的值為3.12、【解析】試題解析:如圖,連接D1E1,設AD1、BE1交于點M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵,∴,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴Sn=.故答案為.13、或或1【解析】

如圖所示:①當AP=AE=1時,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底邊PE=AE=;②當PE=AE=1時,∵BE=AB﹣AE=8﹣1=3,∠B=90°,∴PB==4,∴底邊AP===;③當PA=PE時,底邊AE=1;綜上所述:等腰三角形AEP的對邊長為或或1;故答案為或或1.14、【解析】

先求出每個不等式的解集,再確定其公共解,得到不等式組的解集,然后求其整數解.【詳解】解:,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整數解為0,1,1,則該不等式組的最大整數解是x=1.故答案為:1.【點睛】考查不等式組的解法及整數解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.15、14【解析】

取AE中點I,連接IB,則正八邊形ABCDEFGH是由8個與△IDE全等的三角形構成.【詳解】解:取AE中點I,連接IB.則正八邊形ABCDEFGH是由8個與△IAB全等的三角形構成.∵I是AE的中點,∴S△IAB=12S則圓內接正八邊形ABCDEFGH的面積為:8×3=14cm1.

故答案為14.【點睛】本題考查正多邊形的性質,解答此題的關鍵是作出輔助線構造出三角形.16、108°【解析】

先求出正五邊形各個內角的度數,再求出∠BCD和∠BDC的度數,求出∠CBD,即可求出答案.【詳解】如圖:∵圖中是兩個全等的正五邊形,∴BC=BD,∴∠BCD=∠BDC,∵圖中是兩個全等的正五邊形,∴正五邊形每個內角的度數是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案為108°.【點睛】本題考查了正多邊形和多邊形的內角和外角,能求出各個角的度數是解此題的關鍵.17、【解析】∵2(+)=+,∴2+2=+,∴=-2,故答案為.點睛:本題看成平面向量、一元一次方程等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考基礎題.三、解答題(共7小題,滿分69分)18、(1)y=﹣,y=﹣x﹣2(2)3(3)﹣4<x<0或x>2【解析】試題分析:(1)將B坐標代入反比例解析式中求出m的值,即可確定出反比例解析式;將A坐標代入反比例解析式求出n的值,確定出A的坐標,將A與B坐標代入一次函數解析式中求出k與b的值,即可確定出一次函數解析式;(2)對于直線AB,令y=0求出x的值,即可確定出C坐標,三角形AOB面積=三角形AOC面積+三角形BOC面積,求出即可;(3)由兩函數交點A與B的橫坐標,利用圖象即可求出所求不等式的解集.試題解析:(1)∵B(2,﹣4)在y=上,∴m=﹣1.∴反比例函數的解析式為y=﹣.∵點A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b經過A(﹣4,2),B(2,﹣4),∴,解之得.∴一次函數的解析式為y=﹣x﹣2.(2)∵C是直線AB與x軸的交點,∴當y=0時,x=﹣2.∴點C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=3.(3)不等式的解集為:﹣4<x<0或x>2.19、(1)120,30%;(2)作圖見解析;(3)1.【解析】試題分析:(1)用安全意識分“一般”的人數除以安全意識分“一般”的人數所占的百分比即可得這次調查一共抽取的學生人數;用安全意識分“很強”的人數除以這次調查一共抽取的學生人數即可得安全意識“很強”的學生占被調查學生總數的百分比;(2)用這次調查一共抽取的學生人數乘以安全意識分“較強”的人數所占的百分比即可得安全意識分“較強”的人數,在條形統計圖上畫出即可;(3)用總人數乘以安全意識為“淡薄”、“一般”的學生一共所占的百分比即可得全校需要強化安全教育的學生的人數.試題解析:(1)12÷15%=120人;36÷120=30%;(2)120×45%=54人,補全統計圖如下:(3)1800×=1人.考點:條形統計圖;扇形統計圖;用樣本估計總體.20、(1)詳見解析;(2)詳見解析;(3)2.【解析】(1)由BD是⊙O的切線得出∠DBA=90°,推出CH∥BD,證△AEC∽△AFD,得出比例式即可.(2)證△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根據直角三角形斜邊上中線性質得出CF=DF=BF即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,連接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切線,由切割線定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,從而由勾股定理求得AB=BG的長,從而得到⊙O的半徑r.21、(1)證明見解析;(2)AD=;(3)DG=.【解析】

(1)連接OD,由AD為角平分線得到一對角相等,再由等邊對等角得到一對角相等,等量代換得到內錯角相等,進而得到OD與AC平行,得到OD與BC垂直,即可得證;

(2)連接DF,由(1)得到BC為圓O的切線,由弦切角等于夾弧所對的圓周角,進而得到三角形ABD與三角形ADF相似,由相似得比例,即可表示出AD;

(3)連接EF,設圓的半徑為r,由sinB的值,利用銳角三角函數定義求出r的值,由直徑所對的圓周角為直角,得到EF與BC平行,得到sin∠AEF=sinB,進而求出DG的長即可.【詳解】(1)如圖,連接OD,∵AD為∠BAC的角平分線,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC為圓O的切線;(2)連接DF,由(1)知BC為圓O的切線,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴,即AD2=AB?AF=xy,則AD=;(3)連接EF,在Rt△BOD中,sinB=,設圓的半徑為r,可得,解得:r=5,∴AE=10,AB=18,∵AE是直徑,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=,∴AF=AE?sin∠AEF=10×=,∵AF∥OD,∴,即DG=AD,∴AD=,則DG=.【點睛】圓的綜合題,涉及的知識有:切線的判定與性質,相似三角形的判定與性質,銳角三角函數定義,勾股定理,以及平行線的判定與性質,熟練掌握各自的性質是解本題的關鍵.22、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).【解析】

(1)利用對稱軸公式求出m的值,即可確定出解析式;(1)根據x的范圍,利用二次函數的增減性確定出y的范圍即可;(3)根據題意確定出D與A坐標,進而求出直線AD解析式,設出E坐標,利用對稱性確定出E坐標即可.【詳解】(1)∵拋物線對稱軸為直線x=﹣1,∴﹣=﹣1,即m=﹣1,則二次函數解析式為y=﹣x1﹣1x+6;(1)當x=﹣時,y=;當x=1時,y=.∵﹣<x<1位于對稱軸右側,y隨x的增大而減小,∴<y<;(3)當x=﹣1時,y=8,∴頂點D的坐標是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.∵點A在點B的左側,∴點A坐標為(﹣6,0).設直線AD解析式為y=kx+b,可得:,解得:,即直線AD解析式為y=1x+11.設E(0,n),則有E′(﹣4,n),代入y=1x+11中得:n=4,則點E坐標為(0,4).【點睛】本題考查了拋物線與x軸的交點,以及二次函數的性質,熟練掌握二次函數的性質是解答本題的關鍵.23、(1);(2);(3)【解析】

(1)把A(-1,0)代入y=x2-bx+c,即可得到結論;(2)由(1)得,y=x2-bx-1-b,求得EO=,AE=+1=BE,于是得到OB=EO+BE=++1=b+1,當x=0時,得到y=-b-1,根據等腰直角三角形的性質得到D(,-b-2),將D(,-b-2)代入y=x2-bx-1-b解方程即可得到結論;(3)連接QM,DM,根據平行線的判定得到QN∥MH,根據平行線的性質得到∠NMH=∠QNM,根據已知條件得到∠QMN=∠MQN,設QN=MN=t,求得Q(1-t,t2-4),得到DN=t2-4-(-4)=t2,同理,設MH=s,求得NH=t2-s2,根據勾股定理得到NH=1,根據三角函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論