




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西西安鐵一中學2024屆中考適應性考試數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.數據3、6、7、1、7、2、9的中位數和眾數分別是()A.1和7 B.1和9 C.6和7 D.6和92.如圖,⊙O的半徑OD⊥弦AB于點C,連接AO并延長交⊙O于點E,連接EC,若AB=8,CD=2,則cos∠ECB為()A. B. C. D.3.如圖,是的直徑,弦,垂足為點,點是上的任意一點,延長交的延長線于點,連接.若,則等于()A. B. C. D.4.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數為()A.80° B.70° C.60° D.40°5.若二元一次方程組的解為則的值為()A.1 B.3 C. D.6.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個封閉的長方體包裝盒的是()A. B. C. D.7.計算1+2+22+23+…+22010的結果是()A.22011–1 B.22011+1C. D.8.某市公園的東、西、南、北方向上各有一個入口,周末佳佳和琪琪隨機從一個入口進入該公園游玩,則佳佳和琪琪恰好從同一個入口進入該公園的概率是()A. B. C. D.9.據財政部網站消息,2018年中央財政困難群眾救濟補助預算指標約為929億元,數據929億元科學記數法表示為()A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×101110.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數學興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線a∥b,∠l=60°,∠2=40°,則∠3=_____.12.計算()()的結果等于_____.13.數學的美無處不在.數學家們研究發現,彈撥琴弦發出聲音的音調高低,取決于弦的長度,繃得一樣緊的幾根弦,如果長度的比能夠表示成整數的比,發出的聲音就比較和諧.例如,三根弦長度之比是15:12:10,把它們繃得一樣緊,用同樣的力彈撥,它們將分別發出很調和的樂聲do、mi、so,研究15、12、10這三個數的倒數發現:.我們稱15、12、10這三個數為一組調和數.現有一組調和數:x,5,3(x>5),則x的值是.14.不等式的解集是________________15.填在下列各圖形中的三個數之間都有相同的規律,根據此規律,a的值是____.16.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.三、解答題(共8題,共72分)17.(8分)某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數量不少于A型無人機的數量的2倍.設購進A型無人機x臺,總費用為y元.①求y與x的關系式;②購進A型、B型無人機各多少臺,才能使總費用最少?18.(8分)化簡分式,并從0、1、2、3這四個數中取一個合適的數作為x的值代入求值.19.(8分)某年級組織學生參加夏令營活動,本次夏令營分為甲、乙、丙三組進行活動.下面兩幅統計圖反映了學生報名參加夏令營的情況,請你根據圖中的信息回答下列問題:該年級報名參加丙組的人數為;該年級報名參加本次活動的總人數,并補全頻數分布直方圖;根據實際情況,需從甲組抽調部分同學到丙組,使丙組人數是甲組人數的3倍,應從甲組抽調多少名學生到丙組?20.(8分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC于點D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.21.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.求證:EF是⊙O的切線;已知AB=4,AE=1.求BF的長.22.(10分)如圖,∠AOB=45°,點M,N在邊OA上,點P是邊OB上的點.(1)利用直尺和圓規在圖1確定點P,使得PM=PN;(2)設OM=x,ON=x+4,①若x=0時,使P、M、N構成等腰三角形的點P有個;②若使P、M、N構成等腰三角形的點P恰好有三個,則x的值是____________.23.(12分)(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如下統計圖:根據統計圖所提供的信息,解答下列問題:(1)本次抽樣調查中的樣本容量是;(2)補全條形統計圖;(3)該校共有2000名學生,請根據統計結果估計該校課余興趣愛好為“打球”的學生人數.24.如圖,拋物線y=ax2+bx+c與x軸的交點分別為A(﹣6,0)和點B(4,0),與y軸的交點為C(0,3).(1)求拋物線的解析式;(2)點P是線段OA上一動點(不與點A重合),過P作平行于y軸的直線與AC交于點Q,點D、M在線段AB上,點N在線段AC上.①是否同時存在點D和點P,使得△APQ和△CDO全等,若存在,求點D的坐標,若不存在,請說明理由;②若∠DCB=∠CDB,CD是MN的垂直平分線,求點M的坐標.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
如果一組數據有奇數個,那么把這組數據從小到大排列后,排在中間位置的數是這組數據的中位數;如果一組數據有偶數個,那么把這組數據從小到大排列后,排在中間位置的兩個數的平均數是這組數據的中位數.一組數據中出現次數最多的數據叫做眾數.【詳解】解:∵7出現了2次,出現的次數最多,∴眾數是7;∵從小到大排列后是:1,2,3,6,7,7,9,排在中間的數是6,∴中位數是6故選C.【點睛】本題考查了中位數和眾數的求法,解答本題的關鍵是熟練掌握中位數和眾數的定義.2、D【解析】
連接EB,設圓O半徑為r,根據勾股定理可求出半徑r=4,從而可求出EB的長度,最后勾股定理即可求出CE的長度.利用銳角三角函數的定義即可求出答案.【詳解】解:連接EB,由圓周角定理可知:∠B=90°,設⊙O的半徑為r,由垂徑定理可知:AC=BC=4,∵CD=2,∴OC=r-2,∴由勾股定理可知:r2=(r-2)2+42,∴r=5,BCE中,由勾股定理可知:CE=2,∴cos∠ECB==,故選D.【點睛】本題考查垂徑定理,涉及勾股定理,垂直定理,解方程等知識,綜合程度較高,屬于中等題型.3、B【解析】
連接BD,利用直徑得出∠ABD=65°,進而利用圓周角定理解答即可.【詳解】連接BD,∵AB是直徑,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故選B.【點睛】此題考查圓周角定理,關鍵是利用直徑得出∠ABD=65°.4、B【解析】
根據平行線的性質得到根據BE平分∠ABD,即可求出∠1的度數.【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點睛】本題考查角平分線的性質和平行線的性質,熟記它們的性質是解題的關鍵.5、D【解析】
先解方程組求出,再將代入式中,可得解.【詳解】解:,得,所以,因為所以.故選D.【點睛】本題考查二元一次方程組的解,解題的關鍵是觀察兩方程的系數,從而求出a-b的值,本題屬于基礎題型.6、C【解析】A、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;B、剪去陰影部分后,無法組成長方體,故此選項不合題意;C、剪去陰影部分后,能組成長方體,故此選項正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;故選C.7、A【解析】
可設其和為S,則2S=2+22+23+24+…+22010+22011,兩式相減可得答案.【詳解】設S=1+2+22+23+…+22010①則2S=2+22+23+…+22010+22011②②-①得S=22011-1.故選A.【點睛】本題考查了因式分解的應用;設出和為S,并求出2S進行做差求解是解題關鍵.8、B【解析】
首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果,可求得佳佳和琪琪恰好從同一個入口進入該公園的情況,再利用概率公式求解即可求得答案.【詳解】畫樹狀圖如下:由樹狀圖可知,共有16種等可能結果,其中佳佳和琪琪恰好從同一個入口進入該公園的有4種等可能結果,所以佳佳和琪琪恰好從同一個入口進入該公園的概率為,故選B.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數與總情況數之比.9、B【解析】
科學記數法的表示形式為a×1n的形式,其中1≤|a|<1,n為整數.確定n的值是易錯點,由于929億有11位,所以可以確定n=11-1=1.【詳解】解:929億=92900000000=9.29×11.故選B.【點睛】此題考查科學記數法表示較大的數的方法,準確確定a與n值是關鍵.10、C【解析】
如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結論.【詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數學模型,把實際問題轉化為數學問題.二、填空題(本大題共6個小題,每小題3分,共18分)11、80°【解析】
根據平行線的性質求出∠4,根據三角形內角和定理計算即可.【詳解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案為:80°.【點睛】本題考查的是平行線的性質、三角形內角和定理,掌握兩直線平行,同位角相等是解題的關鍵.12、4【解析】
利用平方差公式計算.【詳解】解:原式=()2-()2=7-3=4.故答案為:4.【點睛】本題考查了二次根式的混合運算.13、1.【解析】依據調和數的意義,有-=-,解得x=1.14、【解析】
首先去分母進而解出不等式即可.【詳解】去分母得,1-2x>15移項得,-2x>15-1合并同類項得,-2x>14系數化為1,得x<-7.故答案為x<-7.【點睛】此題考查了解一元一次不等式,解不等式要依據不等式的基本性質:(1)不等式的兩邊同時加上或減去同一個數或整式不等號的方向不變;(2)不等式的兩邊同時乘以或除以同一個正數不等號的方向不變;(3)不等式的兩邊同時乘以或除以同一個負數不等號的方向改變.15、1.【解析】尋找規律:上面是1,2,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:從第二個圖形開始,左下數字減上面數字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.16、【解析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.三、解答題(共8題,共72分)17、(1)一臺A型無人機售價800元,一臺B型無人機的售價1000元;(2)①y=﹣200x+50000;②購進A型、B型無人機各16臺、34臺時,才能使總費用最少.【解析】
(1)根據3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元,可以列出相應的方程組,從而可以解答本題;(2)①根據題意可以得到y與x的函數關系式;②根據①中的函數關系式和B型無人機的數量不少于A型無人機的數量的2倍,可以求得購進A型、B型無人機各多少臺,才能使總費用最少.【詳解】解:(1)設一臺型無人機售價元,一臺型無人機的售價元,,解得,,答:一臺型無人機售價元,一臺型無人機的售價元;(2)①由題意可得,即y與x的函數關系式為;②∵B型無人機的數量不少于A型無人機的數量的2倍,,解得,,,∴當時,y取得最小值,此時,答:購進型、型無人機各臺、臺時,才能使總費用最少.【點睛】本題考查二元一次方程組的應用、一次函數的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用一次函數的性質和方程的知識解答.18、x取0時,為1或x取1時,為2【解析】試題分析:利用分式的運算,先對分式化簡單,再選擇使分式有意義的數代入求值即可.試題解析:解:原式=[]===x+1,∵x1-4≠0,x-2≠0,∴x≠1且x≠-1且x≠2,當x=0時,原式=1.或當x=1時,原式=2.19、(1)21人;(2)10人,見解析(3)應從甲抽調1名學生到丙組【解析】(1)參加丙組的人數為21人;(2)21÷10%=10人,則乙組人數=10-21-11=10人,如圖:(3)設需從甲組抽調x名同學到丙組,根據題意得:3(11-x)=21+x解得x=1.答:應從甲抽調1名學生到丙組(1)直接根據條形統計圖獲得數據;(2)根據丙組的21人占總體的10%,即可計算總體人數,然后計算乙組的人數,補全統計圖;(3)設需從甲組抽調x名同學到丙組,根據丙組人數是甲組人數的3倍列方程求解20、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】
(1)由直線l與以BC為直徑的圓O相切于點C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據相似三角形的對應邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據相似三角形的對應邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數,則可得F在⊙O的下半圓上,且.【詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)證明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故為60°,∴F在直徑BC下方的圓弧上,且.【點睛】考查了相似三角形的判定與性質,圓的切線的性質,圓周角的性質以及三角函數的性質等知識.此題綜合性很強,解題的關鍵是方程思想與數形結合思想的應用.21、(1)證明見解析;(2)2.【解析】
(1)作輔助線,根據等腰三角形三線合一得BD=CD,根據三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結論;(2)證明△ODF∽△AEF,列比例式可得結論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【點睛】本題主要考查的是圓的綜合應用,解答本題主要應用了圓周角定理、相似三角形的性質和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關鍵.22、(1)見解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】
(1)分別以M、N為圓心,以大于MN為半徑作弧,兩弧相交與兩點,過兩弧交點的直線就是MN的垂直平分線;(2)①分為PM=PN,MP=MN,NP=NM三種情況進行判斷即可;②如圖1,構建腰長為4的等腰直角△OMC,和半徑為4的⊙M,發現M在點D的位置時,滿足條件;如圖4,根據等腰三角形三種情況的畫法:分別以M、N為圓心,以MN為半徑畫弧,與OB的交點就是滿足條件的點P,再以MN為底邊的等腰三角形,通過畫圖發現,無論x取何值,以MN為底邊的等腰三角形都存在一個,所以只要滿足以MN為腰的三角形有兩個即可.【詳解】解:(1)如圖所示:(2)①如圖所示:故答案為1.②如圖1,以M為圓心,以4為半徑畫圓,當⊙M與OB相切時,設切點為C,⊙M與OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴當M與D重合時,即時,同理可知:點P恰好有三個;如圖4,取OM=4,以M為圓心,以OM為半徑畫圓.則⊙M與OB除了O外只有一個交點,此時x=4,即以∠PMN為頂角,MN為腰,符合條件的點P有一個,以N圓心,以MN為半徑畫圓,與直線OB相離,說明此時以∠PNM為頂角,以MN為腰,符合條件的點P不存在,還有一個是以NM為底邊的符合條件的點P;點M沿OA運動,到M1時,發現⊙M1與直線OB有一個交點;∴當時,圓M在移動過程中,則會與OB除了O外有兩個交點,滿足點P恰好有三個;綜上所述,若使點P,M,N構成等腰三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江陽城建職業學院《機器學習與知識發現》2023-2024學年第二學期期末試卷
- 瀟湘職業學院《現代通信前沿技術》2023-2024學年第二學期期末試卷
- 山西省運城市永濟涑北中學2024-2025學年高三第四次四校聯考生物試題含解析
- 江蘇省揚州高郵市2024-2025學年高三TOP300七月尖子生聯考英語試題含解析
- 江西省紅色七校2024-2025學年高三下學期大聯考卷Ⅰ化學試題試卷含解析
- 天津廣播影視職業學院《網站開發(PHP)理論》2023-2024學年第二學期期末試卷
- 江蘇省宜興市洑東中學2025年初三第一次適應性測試自選模塊試題含解析
- 江蘇省徐州市豐縣中學2025屆普通高中教育教學質量監測考試(1月)歷史試題含解析
- 江蘇醫藥職業學院《科學社會主理論與實踐》2023-2024學年第二學期期末試卷
- 遼寧省遼源市鼎高級中學2024-2025學年高三(英語試題理)一模試題含解析
- 福州流動人口登記表
- 北京市昌平區2023-2024學年高二下學期期末考試政治試題
- 2020-2021學年天津市河西區八年級(下)期中語文試卷(附答案詳解)
- 人教版初中化學實驗目錄(總表)
- 監控工程驗收單-范本模板
- DLT 5175-2021 火力發電廠熱工開關量和模擬量控制系統設計規程-PDF解密
- 公路工程設計方案設計工作量及計劃安排
- 5G+“三早”糖尿病管理2024課件
- 財稅代理公司客服培訓課件
- 足球必修課課程教學大綱
- 玻璃鋼錨桿生產工藝
評論
0/150
提交評論