




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙市長雅實、西雅、雅洋市級名校2023-2024學年中考數學適應性模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.2.如圖,在中,,將折疊,使點落在邊上的點處,為折痕,若,則的值為()A. B. C. D.3.在平面直角坐標系xOy中,二次函數y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結論正確的是()A.a<0,b<0,c>0B.﹣=1C.a+b+c<0D.關于x的方程ax2+bx+c=﹣1有兩個不相等的實數根4.把一個多邊形紙片沿一條直線截下一個三角形后,變成一個18邊形,則原多邊形紙片的邊數不可能是()A.16 B.17 C.18 D.195.如圖,點M為?ABCD的邊AB上一動點,過點M作直線l垂直于AB,且直線l與?ABCD的另一邊交于點N.當點M從A→B勻速運動時,設點M的運動時間為t,△AMN的面積為S,能大致反映S與t函數關系的圖象是()A. B. C. D.6.如圖所示,若將△ABO繞點O順時針旋轉180°后得到△A1B1O,則A點的對應點A1點的坐標是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)7.下列說法中,正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對的兩條弧C.經過半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑8.的值是A.±3 B.3 C.9 D.819.如圖,某計算機中有、、三個按鍵,以下是這三個按鍵的功能.(1).:將熒幕顯示的數變成它的正平方根,例如:熒幕顯示的數為49時,按下后會變成1.(2).:將熒幕顯示的數變成它的倒數,例如:熒幕顯示的數為25時,按下后會變成0.2.(3).:將熒幕顯示的數變成它的平方,例如:熒幕顯示的數為6時,按下后會變成3.若熒幕顯示的數為100時,小劉第一下按,第二下按,第三下按,之后以、、的順序輪流按,則當他按了第100下后熒幕顯示的數是多少()A.0.01 B.0.1 C.10 D.10010.一枚質地均勻的骰子,其六個面上分別標有數字1,2,3,4,5,6,投擲一次,朝上一面的數字是偶數的概率為().A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,△ABC是⊙O的內接三角形,AD是⊙O的直徑,∠ABC=50°,則∠CAD=________
.12.已知(x+y)2=25,(x﹣y)2=9,則x2+y2=_____.13.若-2amb4與5a2bn+7是同類項,則m+n=.14.將一副三角板如圖放置,若,則的大小為______.15.如圖,一根5m長的繩子,一端拴在圍墻墻角的柱子上,另一端拴著一只小羊A(羊只能在草地上活動),那么小羊A在草地上的最大活動區域面積是_____平方米.16.如圖,△ABC中,AB=BD,點D,E分別是AC,BD上的點,且∠ABD=∠DCE,若∠BEC=105°,則∠A的度數是_____.三、解答題(共8題,共72分)17.(8分)一輛高鐵與一輛動車組列車在長為1320千米的京滬高速鐵路上運行,已知高鐵列車比動車組列車平均速度每小時快99千米,且高鐵列車比動車組列車全程運行時間少3小時,求這輛高鐵列車全程運行的時間和平均速度.18.(8分)如圖,有長為14m的籬笆,現一面利用墻(墻的最大可用長度a為10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬AB為xm,面積為Sm1.求S與x的函數關系式及x值的取值范圍;要圍成面積為45m1的花圃,AB的長是多少米?當AB的長是多少米時,圍成的花圃的面積最大?19.(8分)中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優秀傳統文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學生的成績作為樣本進行統計,制成如下不完整的統計圖表:頻數頻率分布表成績x(分)頻數(人)頻率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根據所給信息,解答下列問題:(1)m=,n=;(2)補全頻數分布直方圖;(3)這200名學生成績的中位數會落在分數段;(4)若成績在90分以上(包括90分)為“優”等,請你估計該校參加本次比賽的3000名學生中成績是“優”等的約有多少人?20.(8分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數關系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內是否存在一點P,使A、D、Q、P構成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?21.(8分)計算:12+(13)﹣2﹣|1﹣3|﹣(π+1)022.(10分)如圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點B′順時針旋轉90°,畫出旋轉后得到的△A″B′C″,并求邊A′B′在旋轉過程中掃過的圖形面積.23.(12分)現有兩個紙箱,每個紙箱內各裝有4個材質、大小都相同的乒乓球,其中一個紙箱內4個小球上分別寫有1、2、3、4這4個數,另一個紙箱內4個小球上分別寫有5、6、7、8這4個數,甲、乙兩人商定了一個游戲,規則是:從這兩個紙箱中各隨機摸出一個小球,然后把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得1分,若得到積是3的倍數,則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進行下一次游戲,最后得分高者勝出.。(1)請你通過列表(或樹狀圖)分別計算乘積是2的倍數和3的倍數的概率;(2)你認為這個游戲公平嗎?為什么?若你認為不公平,請你修改得分規則,使游戲對雙方公平.24.如圖,在?ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F.求證:△ADE≌△CBF;求證:四邊形BFDE為矩形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
連接AC、CF,根據正方形性質求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質、勾股定理及直角三角形的面積,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.2、B【解析】
根據折疊的性質可知AE=DE=3,然后根據勾股定理求CD的長,然后利用正弦公式進行計算即可.【詳解】解:由折疊性質可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點睛】本題考查折疊的性質,勾股定理解直角三角形及正弦的求法,掌握公式正確計算是本題的解題關鍵.3、D【解析】試題分析:根據圖像可得:a<0,b>0,c<0,則A錯誤;,則B錯誤;當x=1時,y=0,即a+b+c=0,則C錯誤;當y=-1時有兩個交點,即有兩個不相等的實數根,則正確,故選D.4、A【解析】
一個n邊形剪去一個角后,剩下的形狀可能是n邊形或(n+1)邊形或(n-1)邊形.故當剪去一個角后,剩下的部分是一個18邊形,則這張紙片原來的形狀可能是18邊形或17邊形或19邊形,不可能是16邊形.故選A.【點睛】此題主要考查了多邊形,減去一個角的方法可能有三種:經過兩個相鄰點,則少了一條邊;經過一個頂點和一邊,邊數不變;經過兩條鄰邊,邊數增加一條.5、C【解析】分析:本題需要分兩種情況來進行計算得出函數解析式,即當點N和點D重合之前以及點M和點B重合之前,根據題意得出函數解析式.詳解:假設當∠A=45°時,AD=2,AB=4,則MN=t,當0≤t≤2時,AM=MN=t,則S=,為二次函數;當2≤t≤4時,S=t,為一次函數,故選C.點睛:本題主要考查的就是函數圖像的實際應用問題,屬于中等難度題型.解答這個問題的關鍵就是得出函數關系式.6、A【解析】
由題意可知,點A與點A1關于原點成中心對稱,根據圖象確定點A的坐標,即可求得點A1的坐標.【詳解】由題意可知,點A與點A1關于原點成中心對稱,∵點A的坐標是(﹣3,2),∴點A關于點O的對稱點A'點的坐標是(3,﹣2).故選A.【點睛】本題考查了中心對稱的性質及關于原點對稱點的坐標的特征,熟知中心對稱的性質及關于原點對稱點的坐標的特征是解決問題的關鍵.7、D【解析】
根據切線的判定,圓的知識,可得答案.【詳解】解:A、在等圓或同圓中,長度相等的弧是等弧,故A錯誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,故B錯誤;C、經過半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯誤;D、在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑,故D正確;故選:D.【點睛】本題考查了切線的判定及圓的知識,利用圓的知識及切線的判定是解題關鍵.8、C【解析】試題解析:∵∴的值是3故選C.9、B【解析】
根據題中的按鍵順序確定出顯示的數即可.【詳解】解:根據題意得:=40,=0.4,0.42=0.04,=0.4,=40,402=400,400÷6=46…4,則第400次為0.4.故選B.【點睛】此題考查了計算器﹣數的平方,弄清按鍵順序是解本題的關鍵.10、B【解析】
朝上的數字為偶數的有3種可能,再根據概率公式即可計算.【詳解】依題意得P(朝上一面的數字是偶數)=故選B.【點睛】此題主要考查概率的計算,解題的關鍵是熟知概率公式進行求解.二、填空題(本大題共6個小題,每小題3分,共18分)11、40°【解析】連接CD,則∠ADC=∠ABC=50°,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案為:40°.12、17【解析】
先利用完全平方公式展開,然后再求和.【詳解】根據(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9,x2+y2-2xy=9,所以x2+y2=17.【點睛】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等價變形:,,.13、-1.【解析】試題分析:根據同類項是字母相同且相同字母的指數也相同,可得方程組,根據解方程組,可得m、n的值,根據有理數的加法,可得答案.試題解析:由-2amb4與5a2bn+7是同類項,得m=2n+7=4解得m=2n=-3∴m+n=-1.考點:同類項.14、160°【解析】試題分析:先求出∠COA和∠BOD的度數,代入∠BOC=∠COA+∠AOD+∠BOD求出即可.解:∵∠AOD=20°,∠COD=∠AOB=90°,∴∠COA=∠BOD=90°﹣20°=70°,∴∠BOC=∠COA+∠AOD+∠BOD=70°+20°+70°=160°,故答案為160°.考點:余角和補角.15、【解析】試題分析:根據題意可知小羊的最大活動區域為:半徑為5,圓心角度數為90°的扇形和半徑為1,圓心角為60°的扇形,則.點睛:本題主要考查的就是扇形的面積計算公式,屬于簡單題型.本題要特別注意的就是在拐角的位置時所構成的扇形的圓心角度數和半徑,能夠畫出圖形是解決這個問題的關鍵.在求扇形的面積時,我們一定要將圓心角代入進行計算,如果題目中出現的是圓周角,則我們需要求出圓心角的度數,然后再進行計算.16、85°【解析】
設∠A=∠BDA=x,∠ABD=∠ECD=y,構建方程組即可解決問題.【詳解】解:∵BA=BD,∴∠A=∠BDA,設∠A=∠BDA=x,∠ABD=∠ECD=y,則有,解得x=85°,故答案為85°.【點睛】本題考查等腰三角形的性質,三角形的外角的性質,三角形的內角和定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.三、解答題(共8題,共72分)17、這輛高鐵列車全程運行的時間為1小時,平均速度為264千米/小時.【解析】
設動車組列車的平均速度為x千米/小時,則高鐵列車的平均速度為(x+99)千米/小時,根據時間=路程÷速度結合高鐵列車比動車組列車全程運行時間少3小時,即可得出關于x的分式方程,解之經檢驗后即可得出結論.【詳解】設動車組列車的平均速度為x千米/小時,則高鐵列車的平均速度為(x+99)千米/小時,根據題意得:﹣=3,解得:x1=161,x2=﹣264(不合題意,舍去),經檢驗,x=161是原方程的解,∴x+99=264,1320÷(x+99)=1.答:這輛高鐵列車全程運行的時間為1小時,平均速度為264千米/小時.【點睛】本題考查了列分式方程解實際問題的運用及分式方程的解法的運用,解答時根據條件建立方程是關鍵,解答時對求出的根必須檢驗,這是解分式方程的必要步驟.18、(1)S=﹣3x1+14x,≤x<8;(1)5m;(3)46.67m1【解析】
(1)設花圃寬AB為xm,則長為(14-3x),利用長方形的面積公式,可求出S與x關系式,根據墻的最大長度求出x的取值范圍;(1)根據(1)所求的關系式把S=2代入即可求出x,即AB;(3)根據二次函數的性質及x的取值范圍求出即可.【詳解】解:(1)根據題意,得S=x(14﹣3x),即所求的函數解析式為:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴;(1)根據題意,設花圃寬AB為xm,則長為(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,當x=3時,長=14﹣9=15>10不成立,當x=5時,長=14﹣15=9<10成立,∴AB長為5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墻的最大可用長度為10m,0≤14﹣3x≤10,∴,∵對稱軸x=4,開口向下,∴當x=m,有最大面積的花圃.【點睛】二次函數在實際生活中的應用是本題的考點,根據題目給出的條件,找出合適的等量關系,列出方程是解題的關鍵.19、(1)70,0.2;(2)補圖見解析;(3)80≤x<90;(4)750人.【解析】分析:(1)根據第一組的頻數是10,頻率是0.05,求得數據總數,再用數據總數乘以第四組頻率可得m的值,用第三組頻數除以數據總數可得n的值;(2)根據(1)的計算結果即可補全頻數分布直方圖;(3)根據中位數的定義,將這組數據按照從小到大的順序排列后,處于中間位置的數據(或中間兩數據的平均數)即為中位數;(4)利用總數3000乘以“優”等學生的所占的頻率即可.詳解:(1)本次調查的總人數為10÷0.05=200,則m=200×0.35=70,n=40÷200=0.2,(2)頻數分布直方圖如圖所示,(3)200名學生成績的中位數是第100、101個成績的平均數,而第100、101個數均落在80≤x<90,∴這200名學生成績的中位數會落在80≤x<90分數段,(4)該校參加本次比賽的3000名學生中成績“優”等的約有:3000×0.25=750(人).點睛:本題考查讀頻數(率)分布直方圖的能力和利用統計圖獲取信息的能力;利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題.也考查了中位數和利用樣本估計總體.20、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】
(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數的性質求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當0<t<6時,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當t=3時,△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,當AD為菱形的邊時,可得P1(3,0),P3(6,3),當AD為對角線時,P2(0,3),綜上所述,滿足條件的點P坐標為(3,0)或(6,3)或(0,3).【點睛】本題考查四邊形綜合題、等邊三角形的性質和判定、菱形的判定和性質、二次函數的性質等知識,解題的關鍵是學會構建二次函數解決最值問題,學會用分類討論的思想思考問題,屬于中考壓軸題.21、3【解析】
先算負整數指數冪、零指數冪、二次根式的化簡、絕對值,再相加即可求解;【詳解】解:原式=23=23=【點睛】考查實數的混合運算,分別掌握負整數指數冪、零指數冪、二次根式的化簡、絕對值的計算法則是解題的關鍵.22、(1)作圖見解析;(2)作圖見解析;5π(平方單位).【解析】
(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 堅果脫殼器企業縣域市場拓展與下沉戰略研究報告
- 微孔炭塊企業ESG實踐與創新戰略研究報告
- 電動理發推剪企業數字化轉型與智慧升級戰略研究報告
- 客戶管理企劃
- 2025年增敏化學發光免疫分析儀合作協議書
- 陜西、山西省天一大聯考2024-2025學年高中畢業班階段性測試(七)歷史試題及答案
- 2025廠級安全培訓考試試題加解析答案可打印
- 2025企業安全培訓考試試題及答案考試直接用
- 禮儀安全課件圖片素材
- 上海市浦東新區2023-2024學年八年級下學期期末教學質量自主調研物理試題【含答案解析】
- 2024年貴州路橋集團有限公司招聘筆試參考題庫附帶答案詳解
- 2024年南昌市面向社會政府專職消防文員招聘筆試參考題庫附帶答案詳解
- 與醫保有關的信息系統相關材料-模板
- 2024年湖南省各市州湘能農電服務有限公司招聘筆試參考題庫含答案解析
- 腫瘤放療與免疫治療聯合模式探索
- 三年級下冊面積單位換算練習200道及答案
- 熱分析技術應用
- 《游園》(教案)-高中語文統編版必修下冊
- 《勞動用工常見風險》課件
- 正大天虹方矩管鍍鋅方矩管材質書
- 《婚姻繼承法第四章》課件
評論
0/150
提交評論