




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省唐山市灤南一中2024屆高考數學三模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.2.設等差數列的前n項和為,若,則()A. B. C.7 D.23.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.4.已知,則()A.5 B. C.13 D.5.已知,,,則的大小關系為()A. B. C. D.6.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.7.若復數在復平面內對應的點在第二象限,則實數的取值范圍是()A. B. C. D.8.已知,,則的大小關系為()A. B. C. D.9.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.10.已知復數,其中為虛數單位,則()A. B. C.2 D.11.已知,復數,,且為實數,則()A. B. C.3 D.-312.已知函數,若對于任意的,函數在內都有兩個不同的零點,則實數的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某公園劃船收費標準如表:某班16名同學一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.14.某四棱錐的三視圖如圖所示,那么此四棱錐的體積為______.15.已知點是直線上的一點,將直線繞點逆時針方向旋轉角,所得直線方程是,若將它繼續旋轉角,所得直線方程是,則直線的方程是______.16.正項等比數列|滿足,且成等差數列,則取得最小值時的值為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列{an}的前n項和為Sn,且(1)求數列{a(2)求數列{1Sn}的前18.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.19.(12分)已知函數,.(1)若時,解不等式;(2)若關于的不等式在上有解,求實數的取值范圍.20.(12分)在平面直角坐標系中,直線的參數方程為(為參數).在以原點為極點,軸正半軸為極軸的極坐標系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標方程;(2)若點坐標為,圓與直線交于兩點,求的值.21.(12分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.22.(10分)正項數列的前n項和Sn滿足:(1)求數列的通項公式;(2)令,數列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.2、B【解析】
根據等差數列的性質并結合已知可求出,再利用等差數列性質可得,即可求出結果.【詳解】因為,所以,所以,所以,故選:B【點睛】本題主要考查等差數列的性質及前項和公式,屬于基礎題.3、A【解析】由給定的三視圖可知,該幾何體表示一個底面為一個直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.4、C【解析】
先化簡復數,再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數的運算,是基礎題.5、A【解析】
根據指數函數與對數函數的單調性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數,所以所以,故選:A.【點睛】本題主要考查了指數函數、對數函數的單調性,利用單調性比較大小,屬于中檔題.6、A【解析】
先由題和拋物線的性質求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質以及雙曲線的定義是解題的關鍵,屬于中檔題.7、B【解析】
復數,在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.【點睛】本題考查了復數的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.8、D【解析】
由指數函數的圖像與性質易得最小,利用作差法,結合對數換底公式及基本不等式的性質即可比較和的大小關系,進而得解.【詳解】根據指數函數的圖像與性質可知,由對數函數的圖像與性質可知,,所以最小;而由對數換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點睛】本題考查了指數式與對數式的化簡變形,對數換底公式及基本不等式的簡單應用,作差法比較大小,屬于中檔題.9、B【解析】
根據角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B【點睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.10、D【解析】
把已知等式變形,然后利用數代數形式的乘除運算化簡,再由復數模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數代數形式的乘除運算,考查了復數模的求法,是基礎題.11、B【解析】
把和代入再由復數代數形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數,所以,解得.【點睛】本題考查復數的概念,考查運算求解能力.12、D【解析】
將原題等價轉化為方程在內都有兩個不同的根,先求導,可判斷時,,是增函數;當時,,是減函數.因此,再令,求導得,結合韋達定理可知,要滿足題意,只能是存在零點,使得在有解,通過導數可判斷當時,在上是增函數;當時,在上是減函數;則應滿足,再結合,構造函數,求導即可求解;【詳解】函數在內都有兩個不同的零點,等價于方程在內都有兩個不同的根.,所以當時,,是增函數;當時,,是減函數.因此.設,,若在無解,則在上是單調函數,不合題意;所以在有解,且易知只能有一個解.設其解為,當時,在上是增函數;當時,在上是減函數.因為,方程在內有兩個不同的根,所以,且.由,即,解得.由,即,所以.因為,所以,代入,得.設,,所以在上是增函數,而,由可得,得.由在上是增函數,得.綜上所述,故選:D.【點睛】本題考查由函數零點個數求解參數取值范圍問題,構造函數法,導數法研究函數增減性與最值關系,轉化與化歸能力,屬于難題二、填空題:本題共4小題,每小題5分,共20分。13、36010【解析】
列出所有租船的情況,分別計算出租金,由此能求出結果.【詳解】當租兩人船時,租金為:元,當租四人船時,租金為:元,當租1條四人船6條兩人船時,租金為:元,當租2條四人船4條兩人船時,租金為:元,當租3條四人船2條兩人船時,租金為:元,當租1條六人船5條2人船時,租金為:元,當租2條六人船2條2人船時,租金為:元,當租1條六人船1條四人船3條2人船時,租金為:元,當租1條六人船2條四人船1條2人船時,租金為:元,當租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.【點睛】本小題主要考查分類討論的數學思想方法,考查實際應用問題,屬于基礎題.14、【解析】
利用三視圖判斷幾何體的形狀,然后通過三視圖的數據求解幾何體的體積.【詳解】如圖:此四棱錐的高為,底面是長為,寬為2的矩形,所以體積.所以本題答案為.【點睛】本題考查幾何體與三視圖的對應關系,幾何體體積的求法,考查空間想象能力與計算能力.解決本類題目的關鍵是準確理解幾何體的定義,真正把握幾何體的結構特征,可以根據條件構建幾何模型,在幾何模型中進行判斷.15、【解析】
求出點坐標,由于直線與直線垂直,得出直線的斜率為,再由點斜式寫出直線的方程.【詳解】由于直線可看成直線先繞點逆時針方向旋轉角,再繼續旋轉角得到,則直線與直線垂直,即直線的斜率為所以直線的方程為,即故答案為:【點睛】本題主要考查了求直線的方程,涉及了求直線的交點以及直線與直線的位置關系,屬于中檔題.16、2【解析】
先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【點睛】本題考查等比數列、等差數列的有關性質以及等比數列求積、求最值的有關運算,中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)an=2n【解析】
(1)先設出數列的公差為d,結合題中條件,求出首項和公差,即可得出結果.(2)利用裂項相消法求出數列的和.【詳解】解:(1)設公差為d的等差數列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【點睛】本題考查的知識要點:數列的通項公式的求法及應用,裂項相消法在數列求和中的應用,主要考查學生的運算能力和轉化能力,屬于基礎題型.18、(1)見解析;(2)【解析】
(1)過點作交于,連接,設,連接,由角平分線的性質,正方形的性質,三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識和線面的關系可證得平面,建立空間直角坐標系,求得兩個平面的法向量,根據二面角的向量計算公式可求得其值.【詳解】(1)如圖,過點作交于,連接,設,連接,,,又為的角平分線,四邊形為正方形,,又,,,,,又為的中點,又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如圖空間直角坐標系,則,,,,,,,設平面的一個法向量為,則,,令,得,設平面的一個法向量為,則,,令,得,由圖示可知二面角是銳角,故二面角的余弦值為.【點睛】本題考查空間的面面垂直關系的證明,二面角的計算,在證明垂直關系時,注意運用平面幾何中的等腰三角形的“三線合一”,勾股定理、菱形的對角線互相垂直,屬于基礎題.19、(1)(2)【解析】
(1)零點分段法,分,,討論即可;(2)當時,原問題可轉化為:存在,使不等式成立,即.【詳解】解:(1)若時,,當時,原不等式可化為,解得,所以,當時,原不等式可化為,解得,所以,當時,原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當時,由得,即,故得,又由題意知:,即,故的范圍為.【點睛】本題考查解絕對值不等式以及不等式能成立求參數,考查學生的運算能力,是一道容易題.20、(1)(2)【解析】試題分析:(1)由加減消元得直線的普通方程,由得圓的直角坐標方程;(2)把直線l的參數方程代入圓C的直角坐標方程,由直線參數方程幾何意義得|PA|+|PB|=|t1|+|t2|=t1+t2,再根據韋達定理可得結果試題解析:解:(Ⅰ)由得直線l的普通方程為x+y﹣3﹣=0又由得ρ2=2ρsinθ,化為直角坐標方程為x2+(y﹣)2=5;(Ⅱ)把直線l的參數方程代入圓C的直角坐標方程,得(3﹣t)2+(t)2=5,即t2﹣3t+4=0設t1,t2是上述方程的兩實數根,所以t1+t2=3又直線l過點P,A、B兩點對應的參數分別為t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=3.21、(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】
(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據正弦函數的性質計算可得;【詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電梯安全事故盤點及應急知識
- 大數據數據挖掘模型蟻群算法模型重點基礎知識點
- 銀行科技崗面試題及答案
- 2024年應試技巧裁判員試題及答案
- 模具設計師資格考試前的復習試題及答案
- 如何合理安排農業植保員考試復習時間試題及答案
- 農業植保員考試復習博覽與試題及答案
- 腸造口患者健康教育指南
- 2024年足球裁判員考試經典回顧試題及答案
- 游泳救生員資格考試必要準備的試題及答案參考
- 認識浮力+阿基米德原理
- 食堂改造與裝修設計方案
- 關于公司企業進行人員總量控制的實施方案
- 物流運輸托運單模板
- 防止電力生產重大事故地二十五項反措
- 油田結垢機理及防治技術
- 蘇教版五年級數學下冊第三單元測試題及答案一
- 天然氣管道工程施工設計方案方案
- 變電站第二種工作票(范本)
- 抗滑樁設計計算(驗算)Word版
- 全球價值鏈與中國貿易增加值核算報告
評論
0/150
提交評論