




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省成都外國語高級中學2024年高考壓軸卷數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數的圖像向左平移個單位得到函數的圖像,則的最小值為()A. B. C. D.2.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現隨機等可能取出小球,當有放回依次取出兩個小球時,記取出的紅球數為;當無放回依次取出兩個小球時,記取出的紅球數為,則()A., B.,C., D.,4.某設備使用年限x(年)與所支出的維修費用y(萬元)的統計數據分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年5.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.6.已知定義在上的函數,,,,則,,的大小關系為()A. B. C. D.7.設全集U=R,集合,則()A. B. C. D.8.已知定義在上的函數,若函數為偶函數,且對任意,,都有,若,則實數的取值范圍是()A. B. C. D.9.如圖所示的程序框圖,若輸入,,則輸出的結果是()A. B. C. D.10.已知集合A={x|x<1},B={x|},則A. B.C. D.11.設為銳角,若,則的值為()A. B. C. D.12.執行如圖所示的程序框圖,當輸出的時,則輸入的的值為()A.-2 B.-1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列為正項等比數列,,則的最小值為________.14.已知數列滿足,且恒成立,則的值為____________.15.已知數列的各項均為正數,記為數列的前項和,若,,則______.16.設等差數列的前項和為,若,,則數列的公差________,通項公式________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點,平面,,為線段上一點(不與端點重合).(1)若,(ⅰ)求證:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實數滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.18.(12分)已知橢圓經過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.19.(12分)已知函數,曲線在點處的切線方程為求a,b的值;證明:.20.(12分)已知f(x)=|x+3|-|x-2|(1)求函數f(x)的最大值m;(2)正數a,b,c滿足a+2b+3c=m,求證:21.(12分)已知函數.(1)若是函數的極值點,求的單調區間;(2)當時,證明:22.(10分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于,兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據三角函數的平移求出函數的解析式,結合三角函數的性質進行求解即可.【詳解】將函數的圖象向左平移個單位,得到,此時與函數的圖象重合,則,即,,當時,取得最小值為,故選:.【點睛】本題主要考查三角函數的圖象和性質,利用三角函數的平移關系求出解析式是解決本題的關鍵.2、C【解析】
先得出兩直線平行的充要條件,根據小范圍可推導出大范圍,可得到答案.【詳解】直線,,的充要條件是,當a=2時,化簡后發現兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.3、B【解析】
分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區別.4、D【解析】
根據樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.5、A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數基礎題.6、D【解析】
先判斷函數在時的單調性,可以判斷出函數是奇函數,利用奇函數的性質可以得到,比較三個數的大小,然后根據函數在時的單調性,比較出三個數的大小.【詳解】當時,,函數在時,是增函數.因為,所以函數是奇函數,所以有,因為,函數在時,是增函數,所以,故本題選D.【點睛】本題考查了利用函數的單調性判斷函數值大小問題,判斷出函數的奇偶性、單調性是解題的關鍵.7、A【解析】
求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.【點睛】本題考查集合的交集和補集的運算,考查指數不等式和二次不等式的解法,屬于基礎題.8、A【解析】
根據題意,分析可得函數的圖象關于對稱且在上為減函數,則不等式等價于,解得的取值范圍,即可得答案.【詳解】解:因為函數為偶函數,所以函數的圖象關于對稱,因為對任意,,都有,所以函數在上為減函數,則,解得:.即實數的取值范圍是.故選:A.【點睛】本題考查函數的對稱性與單調性的綜合應用,涉及不等式的解法,屬于綜合題.9、B【解析】
列舉出循環的每一步,可得出輸出結果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎題.10、A【解析】∵集合∴∵集合∴,故選A11、D【解析】
用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯系.12、B【解析】若輸入,則執行循環得結束循環,輸出,與題意輸出的矛盾;若輸入,則執行循環得結束循環,輸出,符合題意;若輸入,則執行循環得結束循環,輸出,與題意輸出的矛盾;若輸入,則執行循環得結束循環,輸出,與題意輸出的矛盾;綜上選B.二、填空題:本題共4小題,每小題5分,共20分。13、27【解析】
利用等比數列的性質求得,結合其下標和性質和均值不等式即可容易求得.【詳解】由等比數列的性質可知,則,.當且僅當時取得最小值.故答案為:.【點睛】本題考查等比數列的下標和性質,涉及均值不等式求和的最小值,屬綜合基礎題.14、【解析】
易得,所以是等差數列,再利用等差數列的通項公式計算即可.【詳解】由已知,,因,所以,所以數列是以為首項,3為公差的等差數列,故,所以.故答案為:【點睛】本題考查由遞推數列求數列中的某項,考查學生等價轉化的能力,是一道容易題.15、63【解析】
對進行化簡,可得,再根據等比數列前項和公式進行求解即可【詳解】由數列為首項為,公比的等比數列,所以63【點睛】本題考查等比數列基本量的求法,當處理復雜因式時,常用基本方法為:因式分解,約分。但解題本質還是圍繞等差和等比的基本性質16、2【解析】
直接利用等差數列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數列的基本計算,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(ⅰ)證明見解析(ⅱ)(2)存在,【解析】
(1)(i)連接交于點,連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導出,以為原點建立空間直角坐標系,利用向量法求解;(2)設,求出平面的法向量,利用向量法求解.【詳解】(1)(ⅰ)證明:連接交于點,連接,,因為為線段的中點,所以,因為,所以因為∥所以四邊形為平行四邊形.所以又因為,所以又因為平面,平面,所以平面.(ⅱ)解:如圖,在平行四邊形中因為,,所以以為原點建立空間直角坐標系則,,,所以,,,平面的法向量為設平面的法向量為,則,即,取,得,設平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設所以,,設平面的法向量為,則,取,得,因為直線與平面所成的角的正弦值為,所以解得所以存在滿足,使得直線與平面所成的角的正弦值為.【點睛】此題二查線面平行的證明,考查銳二面角的余弦值的求法,考查滿足線面角的正弦值的點是否存在的判斷與求法,考查空間中線線,線面,面面的位置關系等知識,考查了推理能力與計算能力,屬于中檔題.18、(1);(2)見解析.【解析】
(1)根據題意得出關于、、的方程組,解出、的值,進而可得出橢圓的標準方程;(2)設點、、,設直線的方程為,將該直線的方程與橢圓的方程聯立,并列出韋達定理,由向量的坐標運算可求得點的坐標表達式,并代入韋達定理,消去,可得出點的橫坐標,進而可得出結論.【詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設直線的方程為,、、,由,得.,則有,,由,得,由,可得,,,綜上,點在定直線上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線上的證明,考查計算能力與推理能力,屬于中等題.19、(1);(2)見解析【解析】分析:第一問結合導數的幾何意義以及切點在切線上也在函數圖像上,從而建立關于的等量關系式,從而求得結果;第二問可以有兩種方法,一是將不等式轉化,構造新函數,利用導數研究函數的最值,從而求得結果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡化運算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設則只需證明,設則,在上單調遞增,,使得且當時,,當時,當時,,單調遞減當時,,單調遞增,由,得,,設,,當時,,在單調遞減,,因此(方法二)先證當時,,即證設,則,且,在單調遞增,在單調遞增,則當時,(也可直接分析顯然成立)再證設,則,令,得且當時,,單調遞減;當時,,單調遞增.,即又,點睛:該題考查的是有關利用導數研究函數的綜合問題,在求解的過程中,涉及到的知識點有導數的幾何意義,有關切線的問題,還有就是應用導數證明不等式,可以構造新函數,轉化為最值問題來解決,也可以借用不等式的傳遞性,借助中間量來完成.20、(1)(2)見解析【解析】
(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法,結合基本不等式證得不等式成立.【詳解】(1)由絕對值不等式性質得當且僅當即時等號成立,所以(2)由(1)得.法1:由柯西不等式得當且僅當時等號成立,即,所以.法2:由得,,當且僅當時“=”成立.【點睛】本小題主要考查絕對值三角不等式,考查利用柯西不等式、基本不等式證明不等式,屬于中檔題.21、(1)遞減區間為(-1,0),遞增區間為(2)見解析【解析】
(1)根據函數解析式,先求得導函數,由是函數的極值點可求得參數.求得函數定義域,并根據導函數的符號即可判斷單調區間.(2)當時,.代入函數解析式放縮為,代入證明的不等式可化為,構造函數,并求得,由函數單調性及零點存在定理可知存在唯一的,使得成立,因而求得函數的最小值,由對數式變形化簡可證明,即成立,原不等式得證.【詳解】(1)函數可求得,則解得所以,定義域為,在單調遞增,而,∴當時,,單調遞減,當時,,單調遞增,此時是函數的極小值點,的遞減區間為,遞增區間為(2)證明:當時,,因此要證當時,,只需證明,即令,則,在是單調遞增,而,∴存在唯一的,使得,當,單調遞減,當,單調遞增,因此當時,函數取得最小值,,,故,從而,即,結論成立.【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陽光家園委托協議書
- 車輛保單轉讓協議書
- 酒廠股份合作協議書
- 高層年度分紅協議書
- 雪糕生意轉讓協議書
- 餐飲機器轉讓協議書
- 通訊施工安全協議書
- 車輛有償借用協議書
- 設備制造技術協議書
- 酒店預訂年會協議書
- 《高效面試技巧課件版》教案
- 實驗室精密儀器全面維護保養服務協議
- (三模)2025年沈陽市高中三年級教學質量監測 (三)生物試卷(含答案)
- 拓撲優化與異形結構打印-洞察闡釋
- 【綏化】2025年黑龍江綏化市“市委書記進校園”事業單位引進人才287人筆試歷年典型考題及考點剖析附帶答案詳解
- 粉筆協議班電子合同
- 2025年電纜購銷合同范本9篇
- 2025+CSCO非小細胞肺癌診療指南解讀課件
- 中學生學憲法班會課件
- 醫院后勤考試試題及答案
- 紡織設備電氣控制技術考核試卷
評論
0/150
提交評論