遼寧省沈陽(yáng)市遼寧高級(jí)中學(xué)高一數(shù)學(xué)理摸底試卷含解析_第1頁(yè)
遼寧省沈陽(yáng)市遼寧高級(jí)中學(xué)高一數(shù)學(xué)理摸底試卷含解析_第2頁(yè)
遼寧省沈陽(yáng)市遼寧高級(jí)中學(xué)高一數(shù)學(xué)理摸底試卷含解析_第3頁(yè)
遼寧省沈陽(yáng)市遼寧高級(jí)中學(xué)高一數(shù)學(xué)理摸底試卷含解析_第4頁(yè)
遼寧省沈陽(yáng)市遼寧高級(jí)中學(xué)高一數(shù)學(xué)理摸底試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省沈陽(yáng)市遼寧高級(jí)中學(xué)高一數(shù)學(xué)理摸底試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.已知函數(shù)f(x)=,則f(﹣10)的值是(

)A.﹣2 B.﹣1 C.0 D.1參考答案:D【考點(diǎn)】函數(shù)的值.【專(zhuān)題】計(jì)算題;函數(shù)的性質(zhì)及應(yīng)用.【分析】由題意,代入分段函數(shù)求函數(shù)的值.【解答】解:f(﹣10)=f(﹣10+3)=f(﹣7)=f(﹣7+3)=f(﹣4)=f(﹣4+3)=f(﹣1)=f(﹣1+3)=f(2)=log22=1.故選D.【點(diǎn)評(píng)】本題考查了分段函數(shù)的應(yīng)用,屬于基礎(chǔ)題.2.的展開(kāi)式中的常數(shù)項(xiàng)為(

)A.12 B.﹣12 C.6 D.﹣6參考答案:A【分析】在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令的冪指數(shù)等于0,求出的值,進(jìn)而求得常數(shù)項(xiàng).【詳解】解:展開(kāi)式中的通項(xiàng)公式為,令,解得,故展開(kāi)式中的常數(shù)項(xiàng)為,故選:A【點(diǎn)睛】本題考查二項(xiàng)式展開(kāi)式的常數(shù)項(xiàng),屬于基礎(chǔ)題.3.(5分)圓(x+2)2+y2=4與圓(x﹣2)2+(y﹣1)2=9的位置關(guān)系為() A. 內(nèi)切 B. 相交 C. 外切 D. 相離參考答案:B考點(diǎn): 圓與圓的位置關(guān)系及其判定.專(zhuān)題: 直線與圓.分析: 求出兩圓的圓心和半徑,計(jì)算兩圓的圓心距,將圓心距和兩圓的半徑之和或半徑之差作對(duì)比,判斷兩圓的位置關(guān)系.解答: 解:圓(x+2)2+y2=4的圓心C1(﹣2,0),半徑r=2.圓(x﹣2)2+(y﹣1)2=9的圓心C2(2,1),半徑R=3,兩圓的圓心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以兩圓相交,故選B.點(diǎn)評(píng): 本題考查圓與圓的位置關(guān)系及其判定的方法,關(guān)鍵是求圓心距和兩圓的半徑.4.已知,是單位向量,,若向量滿足,則的取值范圍為()A. B. C. D.參考答案:A【考點(diǎn)】9R:平面向量數(shù)量積的運(yùn)算.【分析】令,,,作出圖象,根據(jù)圖象可求出的最大值、最小值.【解答】解:令,,,如圖所示:則,又,所以點(diǎn)C在以點(diǎn)D為圓心、半徑為1的圓上,易知點(diǎn)C與O、D共線時(shí)達(dá)到最值,最大值為+1,最小值為﹣1,所以的取值范圍為[﹣1,+1].故選A.5.設(shè)函數(shù)f(x)定義在實(shí)數(shù)集上,f(2-x)=f(x),且當(dāng)x≥1時(shí),f(x)=lnx,則有A.f()<f(2)<f()

B.f()<f(2)<f()

C.f()<f()<f(2)

D.f(2)<f()<f()參考答案:C函數(shù)滿足f(2-x)=f(x),則:,,當(dāng)x≥1時(shí),f(x)=lnx,即函數(shù)在區(qū)間上單調(diào)遞增,由函數(shù)的單調(diào)性可得:,故.本題選擇C選項(xiàng).

6.設(shè)函數(shù)f(x)=,則f(f(3))=()A. B.3 C. D.參考答案:D【考點(diǎn)】3T:函數(shù)的值.【分析】由條件求出f(3)=,結(jié)合函數(shù)解析式求出f(f(3))=f()=+1,計(jì)算求得結(jié)果.【解答】解:函數(shù)f(x)=,則f(3)=,∴f(f(3))=f()=+1=,故選D.7.若函數(shù)的定義域?yàn)镽,則實(shí)數(shù)的取值范圍是

)A.

B.

C.D.

參考答案:D8.已知集合A={x|x(x-1)=0},那么

(

)

A.0∈A

B.1A

C.∈A

D.0A

參考答案:A9.化簡(jiǎn)-+—

的結(jié)果為

)A.

B.

C.

D.參考答案:D10.下列各組函數(shù)中,表示同一函數(shù)的是()A.,

B.,C.,

D.,參考答案:D略二、填空題:本大題共7小題,每小題4分,共28分11.(3分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},則A∪B=

.參考答案:R考點(diǎn): 并集及其運(yùn)算.專(zhuān)題: 集合.分析: 求解一元二次不等式化簡(jiǎn)A,然后直接利用并集運(yùn)算得答案.解答: 解:由x2﹣2x>0,得x<0或x>2.∴A={x|x2﹣2x>0}={x|x<0或x>2},又B={x|﹣<x<},∴A∪B=R.故答案為:R.點(diǎn)評(píng): 本題考查了并集及其運(yùn)算,考查了一元二次不等式的解法,是基礎(chǔ)題.12.已知,,若,則____參考答案:【分析】由,,得的坐標(biāo),根據(jù)得,由向量數(shù)量積的坐標(biāo)表示即可得結(jié)果.【詳解】∵,,∴又∵,∴,即,所以,解得,故答案為.【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,兩向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.13.某種商品進(jìn)貨價(jià)每件50元,據(jù)市場(chǎng)調(diào)查,當(dāng)銷(xiāo)售價(jià)格(每件x元)在時(shí),每天售出的件數(shù),當(dāng)銷(xiāo)售價(jià)格定為元時(shí)所獲利潤(rùn)最多.參考答案:60略14.若函數(shù)的零點(diǎn)為,則滿足且k為整數(shù),則k=

.參考答案:215.設(shè)函數(shù)f(x)滿足f(x)=1+f()log2x,則f(2)=.參考答案:【考點(diǎn)】函數(shù)的值.【分析】通過(guò)表達(dá)式求出f(),然后求出函數(shù)的解析式,即可求解f(2)的值.【解答】解:因?yàn)椋裕啵?.故答案為:.16.若直線與直線互相垂直,那么的值等于

。參考答案:17.將函數(shù)的圖像,按平移到,則的解析式為

.參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟18.已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),設(shè)h(x)=f(x)-g(x).(1)求函數(shù)h(x)的定義域;(2)判斷h(x)的奇偶性,并說(shuō)明理由;(3)若f(3)=2,求使h(x)>0成立的x的集合.

參考答案:解析:(1)由對(duì)數(shù)的意義,分別得1+x>0,1-x>0,即x>-1,x<1.∴函數(shù)f(x)的定義域?yàn)?-1,+∞),函數(shù)g(x)的定義域?yàn)?-∞,1),∴函數(shù)h(x)的定義域?yàn)?-1,1).(2)∵對(duì)任意的x∈(-1,1),-x∈(-1,1),h(-x)=f(-x)-g(-x)=loga(1-x)-loga(1+x)=g(x)-f(x)=-h(huán)(x),∴h(x)是奇函數(shù).(3)由f(3)=2,得a=2.此時(shí)h(x)=log2(1+x)-log2(1-x),由h(x)>0即log2(1+x)-log2(1-x)>0,∴l(xiāng)og2(1+x)>log2(1-x).由1+x>1-x>0,解得0<x<1.故使h(x)>0成立的x的集合是{x|0<x<1}.

19.已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R,a≠0),f(﹣2)=f(0)=0,f(x)的最小值為﹣1.(1)求函數(shù)f(x)的解析式;(2)設(shè)函數(shù)h(x)=log2[n﹣f(x)],若此函數(shù)在定義域范圍內(nèi)不存在零點(diǎn),求實(shí)數(shù)n的取值范圍.參考答案:【考點(diǎn)】54:根的存在性及根的個(gè)數(shù)判斷;3W:二次函數(shù)的性質(zhì).【分析】(1)利用函數(shù)的最小值為﹣1,判斷a的符號(hào),推出a=1,求解函數(shù)的解析式;(2)解1:過(guò)函數(shù)h(x)=log2[n﹣f(x)]在定義域內(nèi)不存在零點(diǎn),必須且只須有n﹣f(x)>0有解,且n﹣f(x)=1無(wú)解.推出n>fmin(x),然后求解n的取值范圍.(2)解2..,令t=﹣x2﹣2x+n=﹣(x+1)2+n+1,轉(zhuǎn)化為log2(n+1)<0,求出n的取值范圍即可.【解答】解:(1)由題意設(shè)f(x)=ax(x+2),∵f(x)的最小值為﹣1,∴a>0,且f(﹣1)=﹣1,∴a=1,∴f(x)=x2+2x.(2)解1,函數(shù)h(x)=log2[n﹣f(x)]在定義域內(nèi)不存在零點(diǎn),必須且只須有n﹣f(x)>0有解,且n﹣f(x)=1無(wú)解.∴n>fmin(x),且n不屬于f(x)+1的值域,又∵f(x)=x2+2x=(x+1)2﹣1,∴f(x)的最小值為﹣1,f(x)+1的值域?yàn)閇0,+∞),∴n>﹣1,且n<0∴n的取值范圍為(﹣1,0).(2)解2.令t=﹣x2﹣2x+n=﹣(x+1)2+n+1,必有0<t≤n+1,得h(x)≤log2(n+1),因?yàn)楹瘮?shù)h(x)=log2[n﹣f(x)]在定義域內(nèi)不存在零點(diǎn),所以log2(n+1)<0,得n+1<1,即n<0,又n>﹣1(否則函數(shù)定義域?yàn)榭占?,不是函?shù))所以;

n的取值范圍為(﹣1,0).20.(本小題滿分13分)如圖,已知底角為45的等腰梯形ABCD,底邊BC長(zhǎng)為7cm,腰長(zhǎng)為,當(dāng)一條垂直于底邊BC(垂足為F)的直線l從左至右移動(dòng)(與梯形ABCD有公共點(diǎn))時(shí),直線l把梯形分成兩部分,令BF=x,試寫(xiě)出左邊部分的面積y與x的函數(shù)解析式。

參考答案:過(guò)點(diǎn)分別作,,垂足分別是,...2分因?yàn)锳BCD是等腰梯形,底角為,,所以,......4分又,所以6分⑴當(dāng)點(diǎn)在上時(shí),即時(shí),;

......8分⑵當(dāng)點(diǎn)在上時(shí),即時(shí),...10分⑶當(dāng)點(diǎn)在上時(shí),即時(shí),=

........12分所以,函數(shù)解析式為

.......13分21

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論