




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江蘇省南京市建鄴區三校聯合~中考數學考前最后一卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列計算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣62.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數y=(k<0)的圖象經過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣363.下列運算正確的是()A.﹣3a+a=﹣4a B.3x2?2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x44.若二次函數y=-x2+bx+c與x軸有兩個交點(m,0),(m-6,0),該函數圖像向下平移n個單位長度時與x軸有且只有一個交點,則n的值是()A.3 B.6 C.9 D.365.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=()A. B. C.12 D.246.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:27.姜老師給出一個函數表達式,甲、乙、丙三位同學分別正確指出了這個函數的一個性質.甲:函數圖像經過第一象限;乙:函數圖像經過第三象限;丙:在每一個象限內,y值隨x值的增大而減小.根據他們的描述,姜老師給出的這個函數表達式可能是()A. B. C. D.8.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐9.如圖,圓O是等邊三角形內切圓,則∠BOC的度數是()A.60° B.100° C.110° D.120°10.如圖,在⊙O中,弦AB=CD,AB⊥CD于點E,已知CE?ED=3,BE=1,則⊙O的直徑是()A.2 B. C.2 D.5二、填空題(本大題共6個小題,每小題3分,共18分)11.計算a3÷a2?a的結果等于_____.12.小青在八年級上學期的數學成績如下表所示.平時測驗期中考試期末考試成績869081如果學期總評成績根據如圖所示的權重計算,小青該學期的總評成績是_____分.13.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=_____°.14.甲,乙兩家汽車銷售公司根據近幾年的銷售量分別制作了如圖所示的統計圖,從2014~2018年,這兩家公司中銷售量增長較快的是_____公司(填“甲”或“乙”).15.若關于x的方程的解是正數,則m的取值范圍是____________________16.已知數據x1,x2,…,xn的平均數是,則一組新數據x1+8,x2+8,…,xn+8的平均數是____.三、解答題(共8題,共72分)17.(8分)新春佳節,電子鞭炮因其安全、無污染開始走俏.某商店經銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調查發現,該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.(1)求w與x之間的函數關系式;(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想賣得快.那么銷售單價應定為多少元?18.(8分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,且BF是⊙O的切線,BF交AC的延長線于F.(1)求證:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的長.19.(8分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結果保留整數)(參考數據:sin35°=0.57,cos35°=0.82,tan35°=0.70)20.(8分)如圖,已知二次函數的圖象與軸交于,兩點在左側),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.21.(8分)中央電視臺的“朗讀者”節目激發了同學們的讀書熱情,為了引導學生“多讀書,讀好書”,某校對八年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發現,學生課外閱讀的本書最少的有5本,最多的有8本,并根據調查結果繪制了不完整的圖表,如圖所示:本數(本)頻數(人數)頻率50.26180.36714880.16合計1(1)統計表中的________,________,________;請將頻數分布表直方圖補充完整;求所有被調查學生課外閱讀的平均本數;若該校八年級共有1200名學生,請你分析該校八年級學生課外閱讀7本及以上的人數.22.(10分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大小;(2)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大小.23.(12分)在“優秀傳統文化進校園”活動中,學校計劃每周二下午第三節課時間開展此項活動,擬開展活動項目為:剪紙,武術,書法,器樂,要求七年級學生人人參加,并且每人只能參加其中一項活動.教務處在該校七年級學生中隨機抽取了100名學生進行調查,并對此進行統計,繪制了如圖所示的條形統計圖和扇形統計圖(均不完整).請解答下列問題:請補全條形統計圖和扇形統計圖;在參加“剪紙”活動項目的學生中,男生所占的百分比是多少?若該校七年級學生共有500人,請估計其中參加“書法”項目活動的有多少人?學校教務處要從這些被調查的女生中,隨機抽取一人了解具體情況,那么正好抽到參加“器樂”活動項目的女生的概率是多少?24.某初中學校組織400位同學參加義務植樹活動,每人植樹的棵數在5至10之間,甲、乙兩位同學分別調查了30位同學的植樹情況,并將收集的數據進行了整理,繪制成統計表分別為表1和表2:表1:甲調查九年級30位同學植樹情況統計表(單位:棵)每人植樹情況78910人數36156頻率0.10.20.50.2表2:乙調查三個年級各10位同學植樹情況統計表(單位:棵)每人植樹情況678910人數363116頻率0.10.20.10.40.2根據以上材料回答下列問題:(1)表1中30位同學植樹情況的中位數是棵;(2)已知表2的最后兩列中有一個錯誤的數據,這個錯誤的數據是,正確的數據應該是;(3)指出哪位同學所抽取的樣本能更好反映此次植樹活動情況,并用該樣本估計本次活動400位同學一共植樹多少棵?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
分別根據二次根式的定義,乘方的意義,負指數冪的意義以及絕對值的定義解答即可.【詳解】=3,故選項A不合題意;﹣32=﹣9,故選項B不合題意;(﹣3)﹣2=,故選項C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項D不合題意.故選C.【點睛】本題主要考查了二次根式的定義,乘方的定義、負指數冪的意義以及絕對值的定義,熟記定義是解答本題的關鍵.2、B【解析】
解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數y=(k<0)的圖象經過點B,∴﹣4=,得k=﹣32.故選B.【點睛】本題主要考查菱形的性質和用待定系數法求反函數的系數,解此題的關鍵在于根據A點坐標求得OA的長,再根據菱形的性質求得B點坐標,然后用待定系數法求得反函數的系數即可.3、D【解析】
根據合并同類項、單項式的乘法、積的乘方和單項式的乘法逐項計算,結合排除法即可得出答案.【詳解】A.﹣3a+a=﹣2a,故不正確;B.3x2?2x=6x3,故不正確;C.4a2﹣5a2=-a2,故不正確;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正確;故選D.【點睛】本題考查了合并同類項、單項式的乘法、積的乘方和單項式的乘法,熟練掌握它們的運算法則是解答本題的關鍵.4、C【解析】
設交點式為y=-(x-m)(x-m+6),在把它配成頂點式得到y=-[x-(m-3)]2+1,則拋物線的頂點坐標為(m-3,1),然后利用拋物線的平移可確定n的值.【詳解】設拋物線解析式為y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴拋物線的頂點坐標為(m-3,1),∴該函數圖象向下平移1個單位長度時頂點落在x軸上,即拋物線與x軸有且只有一個交點,即n=1.故選C.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質.5、A【解析】
解:如圖,設對角線相交于點O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB?DH=AC?BD,即5DH=×8×6,解得DH=.故選A.【點睛】本題考查菱形的性質.6、D【解析】
依據平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據平行線分線段成比例定理,即可得出AE與EC的比值.【詳解】∵l1∥l2,∴,設AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.7、B【解析】y=3x的圖象經過一三象限過原點的直線,y隨x的增大而增大,故選項A錯誤;y=的圖象在一、三象限,在每個象限內y隨x的增大而減小,故選項B正確;y=?的圖象在二、四象限,故選項C錯誤;y=x2的圖象是頂點在原點開口向上的拋物線,在一、二象限,故選項D錯誤;故選B.8、C【解析】分析:根據一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.9、D【解析】
由三角形內切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應數值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點睛】此題主要考查了三角形的內切圓與內心以及切線的性質.關鍵是要知道關系式∠OBC+∠OCB=(∠ABC+∠ACB).10、C【解析】
作OH⊥AB于H,OG⊥CD于G,連接OA,根據相交弦定理求出EA,根據題意求出CD,根據垂徑定理、勾股定理計算即可.【詳解】解:作OH⊥AB于H,OG⊥CD于G,連接OA,由相交弦定理得,CE?ED=EA?BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE?ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由題意得,四邊形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=,∴⊙O的直徑為,故選C.【點睛】此題考查了相交弦定理、垂徑定理、勾股定理、矩形的判定與性質;根據圖形作出相應的輔助線是解本題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、a1【解析】
根據同底數冪的除法法則和同底數冪乘法法則進行計算即可.【詳解】解:原式=a3﹣1+1=a1.故答案為a1.【點睛】本題考查了同底數冪的乘除法,關鍵是掌握計算法則.12、84.2【解析】小青該學期的總評成績為:86×10%+90×30%+81×60%=84.2(分),故答案為:84.2.13、40【解析】如圖,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案為:40.14、甲【解析】
根據甲,乙兩公司折線統計圖中2014年、2018年的銷售量,計算即可得到增長量;根據兩個統計圖中甲,乙兩公司銷售增長量即可確定答案.【詳解】解:從折線統計圖中可以看出:甲公司2014年的銷售量約為100輛,2018年約為600輛,則從2014~2018年甲公司增長了500輛;乙公司2014年的銷售量為100輛,2018年的銷售量為400輛,則從2014~2018年,乙公司中銷售量增長了300輛.所以這兩家公司中銷售量增長較快的是甲公司,故答案為:甲.【點睛】本題考查了折線統計圖的相關知識,由統計圖得到關鍵信息是解題的關鍵;15、m<4且m≠2【解析】解方程得x=4-m,由已知可得x>0且x-2≠0,則有4-m>0且4-m-2≠0,解得:m<4且m≠2.16、【解析】
根據數據x1,x2,…,xn的平均數為=(x1+x2+…+xn),即可求出數據x1+1,x2+1,…,xn+1的平均數.【詳解】數據x1+1,x2+1,…,xn+1的平均數=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.故答案為+1.【點睛】本題考查了平均數的概念,平均數是指在一組數據中所有數據之和再除以數據的個數.平均數是表示一組數據集中趨勢的量數,它是反映數據集中趨勢的一項指標.三、解答題(共8題,共72分)17、(1)w=﹣2x2+480x﹣25600;(2)銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元(3)銷售單價應定為100元【解析】
(1)用每件的利潤乘以銷售量即可得到每天的銷售利潤,即然后化為一般式即可;
(2)把(1)中的解析式進行配方得到頂點式然后根據二次函數的最值問題求解;
(3)求所對應的自變量的值,即解方程然后檢驗即可.【詳解】(1)w與x的函數關系式為:(2)∴當時,w有最大值.w最大值為1.答:銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元.(3)當時,解得:∵想賣得快,不符合題意,應舍去.答:銷售單價應定為100元.18、(1)證明略;(2)BC=,BF=.【解析】試題分析:(1)連結AE.有AB是⊙O的直徑可得∠AEB=90°再有BF是⊙O的切線可得BF⊥AB,利用同角的余角相等即可證明;(2)在Rt△ABE中有三角函數可以求出BE,又有等腰三角形的三線合一可得BC=2BE,過點C作CG⊥AB于點G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后證出△AGC∽△ABF有相似的性質求出BF即可.試題解析:(1)證明:連結AE.∵AB是⊙O的直徑,∴∠AEB=90°,∴∠1+∠2=90°.∵BF是⊙O的切線,∴BF⊥AB,∴∠CBF+∠2=90°.∴∠CBF=∠1.∵AB=AC,∠AEB=90°,∴∠1=∠CAB.∴∠CBF=∠CAB.(2)解:過點C作CG⊥AB于點G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=.∵∠AEB=90°,AB=5.∴BE=AB·sin∠1=.∵AB=AC,∠AEB=90°,∴BC=2BE=.在Rt△ABE中,由勾股定理得.∴sin∠2=,cos∠2=.在Rt△CBG中,可求得GC=4,GB=2.∴AG=3.∵GC∥BF,∴△AGC∽△ABF.∴,∴.考點:切線的性質,相似的性質,勾股定理.19、熱氣球離地面的高度約為1米.【解析】
作AD⊥BC交CB的延長線于D,設AD為x,表示出DB和DC,根據正切的概念求出x的值即可.【詳解】解:作AD⊥BC交CB的延長線于D,設AD為x,由題意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈1.答:熱氣球離地面的高度約為1米.【點睛】考查的是解直角三角形的應用,理解仰角和俯角的概念、掌握銳角三角函數的概念是解題的關鍵,解答時,注意正確作出輔助線構造直角三角形.20、(1)4;(2),;(3).【解析】
(1)過點D作DE⊥x軸于點E,求出二次函數的頂點D的坐標,然后求出A、B、C的坐標,然后根據即可得出結論;(2)設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關于t的方程即可得出結論;(3)判斷點D在直線上,根據勾股定理求出DH,即可求出平移后的二次函數解析式,設點,,過點作于,于,軸于,根據勾股定理求出AG,聯立方程即可求出m、n,從而求出結論.【詳解】解:(1)過點D作DE⊥x軸于點E當時,得到,頂點,∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點在直線上,直線交軸于點,如圖2,過點作軸于,;由題意,平移后的新拋物線頂點為,解析式為,設點,,則,,,過點作于,于,軸于,,,、分別平分,,,點在拋物線上,,根據題意得:解得:【點睛】此題考查的是二次函數的綜合大題,難度較大,掌握二次函數平移規律、二次函數的圖象及性質、相似三角形的判定及性質和勾股定理是解決此題的關鍵.21、(1)10,0.28,50(2)圖形見解析(3)6.4(4)528【解析】分析:(1)首先求出總人數,再根據頻率,總數,頻數的關系即可解決問題;(2)根據a的值畫出條形圖即可;(3)根據平均數的定義計算即可;(4)用樣本估計總體的思想解決問題即可;詳解:(1)由題意c==50,a=50×0.2=10,b==0.28,c=50;故答案為10,0.28,50;(2)將頻數分布表直方圖補充完整,如圖所示:(3)所有被調查學生課外閱讀的平均本數為:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)該校七年級學生課外閱讀7本及以上的人數為:(0.28+0.16)×1200=528(人).點睛:本題考查頻數分布直方圖、扇形統計圖、樣本估計總體等知識,解題的關鍵是熟練掌握基本概念,靈活運用所學知識解決問題,屬于中考常考題型.22、(1)30°;(2)20°;【解析】
(1)利用圓切線的性質求解;(2)連接OQ,利用圓的切線性質及角之間的關系求解。【詳解】(1)如圖①中,連接OQ.∵EQ是切線,∴OQ⊥EQ,∴∠OQE=90°,∵OA⊥OB,∴∠AOB=90°,∴∠AQB=∠AOB=45°,∵OB=OQ,∴∠OBQ=∠OQB=15°,∴∠AQE=90°﹣15°﹣45°=30°.(2)如圖②中,連接OQ.∵OB=OQ,∴∠B=∠OQB=65°,∴∠BOQ=50°,∵∠AOB=90°,∴∠AOQ=40°,∵OQ=OA,∴∠OQA=∠OAQ=70°,∵EQ是切線,∴∠OQE=90°,∴∠AQE=90°﹣70°=20°.【點睛】此題主要考查圓的切線的性質及圓中集合問題的綜合運等.23、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論