




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省嘉興市七校2024年高三第三次模擬考試數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線上一點的縱坐標為4,則點到拋物線焦點的距離為()A.2 B.3 C.4 D.52.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.3.已知復數滿足,其中為虛數單位,則().A. B. C. D.4.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或5.已知橢圓的左、右焦點分別為,,上頂點為點,延長交橢圓于點,若為等腰三角形,則橢圓的離心率A. B.C. D.6.若,滿足約束條件,則的取值范圍為()A. B. C. D.7.若函數在處有極值,則在區間上的最大值為()A. B.2 C.1 D.38.復數(為虛數單位),則的共軛復數在復平面上對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.設是等差數列的前n項和,且,則()A. B. C.1 D.210.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.11.已知函數,方程有四個不同的根,記最大的根的所有取值為集合,則“函數有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知定義在上的可導函數滿足,若是奇函數,則不等式的解集是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在一次醫療救助活動中,需要從A醫院某科室的6名男醫生、4名女醫生中分別抽調3名男醫生、2名女醫生,且男醫生中唯一的主任醫師必須參加,則不同的選派案共有________種.(用數字作答)14.平面區域的外接圓的方程是____________.15.(5分)函數的定義域是____________.16.已知數列為等比數列,,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)根據國家統計局數據,1978年至2018年我國GDP總量從0.37萬億元躍升至90萬億元,實際增長了242倍多,綜合國力大幅提升.將年份1978,1988,1998,2008,2018分別用1,2,3,4,5代替,并表示為;表示全國GDP總量,表中,.326.4741.90310209.7614.05(1)根據數據及統計圖表,判斷與(其中為自然對數的底數)哪一個更適宜作為全國GDP總量關于的回歸方程類型?(給出判斷即可,不必說明理由),并求出關于的回歸方程.(2)使用參考數據,估計2020年的全國GDP總量.線性回歸方程中斜率和截距的最小二乘法估計公式分別為:,.參考數據:45678的近似值551484031097298118.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點,.(1)求證:平面;(2)求證:.19.(12分)已知函數,.(1)求函數在處的切線方程;(2)當時,證明:對任意恒成立.20.(12分)(1)求曲線和曲線圍成圖形的面積;(2)化簡求值:.21.(12分)已知函數,函數在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調性;(2)對于函數圖象上的不同兩點,,如果在函數圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.22.(10分)已知函數,(其中,).(1)求函數的最小值.(2)若,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】試題分析:拋物線焦點在軸上,開口向上,所以焦點坐標為,準線方程為,因為點A的縱坐標為4,所以點A到拋物線準線的距離為,因為拋物線上的點到焦點的距離等于到準線的距離,所以點A與拋物線焦點的距離為5.考點:本小題主要考查應用拋物線定義和拋物線上點的性質拋物線上的點到焦點的距離,考查學生的運算求解能力.點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質在解題時經常用到,可以簡化運算.2、D【解析】
設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.3、A【解析】
先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A【點睛】此題考查復數的基本運算,注意計算的準確度,屬于簡單題目.4、D【解析】
根據正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.5、B【解析】
設,則,,因為,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設,則,在中,易得,所以,解得(負值舍去),所以橢圓的離心率.故選B.6、B【解析】
根據約束條件作出可行域,找到使直線的截距取最值得點,相應坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經過點時,取得最小值-5;經過點時,取得最大值5,故.故選:B【點睛】本題考查根據線性規劃求范圍,屬于基礎題.7、B【解析】
根據極值點處的導數為零先求出的值,然后再按照求函數在連續的閉區間上最值的求法計算即可.【詳解】解:由已知得,,,經檢驗滿足題意.,.由得;由得或.所以函數在上遞增,在上遞減,在上遞增.則,,由于,所以在區間上的最大值為2.故選:B.【點睛】本題考查了導數極值的性質以及利用導數求函數在連續的閉區間上的最值問題的基本思路,屬于中檔題.8、C【解析】
由復數除法求出,寫出共軛復數,寫出共軛復數對應點坐標即得【詳解】解析:,,對應點為,在第三象限.故選:C.【點睛】本題考查復數的除法運算,共軛復數的概念,復數的幾何意義.掌握復數除法法則是解題關鍵.9、C【解析】
利用等差數列的性質化簡已知條件,求得的值.【詳解】由于等差數列滿足,所以,,.故選:C【點睛】本小題主要考查等差數列的性質,屬于基礎題.10、D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設,則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯立方程組,合理利用根與系數的關系和中點坐標公式是解答的關鍵,著重考查了推理與運算能力.11、A【解析】
作出函數的圖象,得到,把函數有零點轉化為與在(2,4]上有交點,利用導數求出切線斜率,即可求得的取值范圍,再根據充分、必要條件的定義即可判斷.【詳解】作出函數的圖象如圖,由圖可知,,函數有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數零點的判定,考查數學轉化思想方法與數形結合的解題思想方法,訓練了利用導數研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.12、A【解析】
構造函數,根據已知條件判斷出的單調性.根據是奇函數,求得的值,由此化簡不等式求得不等式的解集.【詳解】構造函數,依題意可知,所以在上遞增.由于是奇函數,所以當時,,所以,所以.由得,所以,故不等式的解集為.故選:A【點睛】本小題主要考查構造函數法解不等式,考查利用導數研究函數的單調性,考查化歸與轉化的數學思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先選派男醫生中唯一的主任醫師,由題意利用排列組合公式即可確定不同的選派案方法種數.【詳解】首先選派男醫生中唯一的主任醫師,然后從名男醫生、名女醫生中分別抽調2名男醫生、名女醫生,故選派的方法為:.故答案為.【點睛】解排列組合問題要遵循兩個原則:一是按元素(或位置)的性質進行分類;二是按事情發生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).14、【解析】
作出平面區域,可知平面區域為三角形,求出三角形的三個頂點坐標,設三角形的外接圓方程為,將三角形三個頂點坐標代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區域如下圖所示:由圖可知,平面區域為,聯立,解得,則點,同理可得點、,設的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【點睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區域的求作,考查數形結合思想以及運算求解能力,屬于中等題.15、【解析】
要使函數有意義,則,即,解得,故函數的定義域是.16、81【解析】
設數列的公比為,利用等比數列通項公式求出,代入等比數列通項公式即可求解.【詳解】設數列的公比為,由題意知,因為,由等比數列通項公式可得,,解得,由等比數列通項公式可得,.故答案為:【點睛】本題考查等比數列通項公式;考查運算求解能力;屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)148萬億元.【解析】
(1)由散點圖知更適宜,對兩邊取自然對數得,令,,,則,再利用線性回歸方程的計算公式計算即可;(2)將代入所求的回歸方程中計算即可.【詳解】(1)根據數據及圖表可以判斷,更適宜作為全國GDP總量關于的回歸方程.對兩邊取自然對數得,令,,,得.因為,所以,所以關于的線性回歸方程為,所以關于的回歸方程為.(2)將代入,其中,于是2020年的全國GDP總量約為:萬億元.【點睛】本題考查非線性回歸方程的應用,在處理非線性回歸方程時,先作變換,轉化成線性回歸直線方程來處理,是一道中檔題.18、(1)證明見解析(2)證明見解析【解析】
(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因為為平行四邊形,為其中心,所以,為中點,又因為為中點,所以,又平面,平面所以,平面;(2)作于因為平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【點睛】此題考查證明線面平行和線面垂直,通過線面垂直得線線垂直,關鍵在于熟練掌握相關判定定理,找出平行關系和垂直關系證明.19、(1)(2)見解析【解析】
(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設,,當時,,即可求得答案.【詳解】(1),,,函數在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設,,當時,,,令,解得,當時,,函數在上單調遞減;當時,,函數在上單調遞增.,,,當時,對任意恒成立,即當時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關鍵是掌握由導數求切線方程的解法和根據導數求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.20、(1)(2)【解析】
(1)求曲線和曲線圍成的圖形面積,首先求出兩曲線交點的橫坐標0、1,然后求在區間上的定積分.(2)首先利用二倍角公式及兩角差的余弦公式計算出,然后再整體代入可得;【詳解】解:(1)聯立解得,,所以曲線和曲線圍成的圖形面積.(2)∴【點睛】本題考查定積分求曲邊形的面積以及三角恒等變換的應用,屬于中檔題.21、(1),單調性見解析;(2)不存在,理由見解析【解析】
(1)由題意得,即可得;求出函數的導數,再根據、、、分類討論,分別求出、的解集即可得解;(2)假設滿足條件的、存在,不妨設,且,由題意得可得,令(),構造函數(),求導后證明即可得解.【詳解】(1)由題可得函數的定義域為且,由,整理得..(ⅰ)當時,易知,,時.故在上單調遞增,在上單調遞減.(ⅱ)當時,令,解得或,則①當,即時,在上恒成立,則在上遞增.②當,即時,當時,;當時,.所以在上單調遞增,單調遞減,單調遞增.③當,即時,當時,;當時,.所以在上單調遞增,單調遞減,單調遞增.綜上,當時,在上單調遞增,在單調遞減.當時,在及上單調遞增;在上單調遞減.當時,在上遞增.當時,在及上單調遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設滿足條件的、存在,不妨設,且,則,又,由題可知,整理可得:,令(),構造函數().
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第一章概述第一節裝卸搬運機械的類型港口常用裝卸搬運機械按作
- 申請信息公開物業合同協議
- 白領西裝采購合同協議
- 電子商務勞務合同協議
- 生鮮肉類購銷合同協議
- 玻璃隔斷裝修合同協議
- 畜牧業轉讓合同協議
- 瓷磚加工合同協議書范本
- 盈利小作坊轉讓合同協議
- 玉米秸稈草料收購合同協議
- 2024年貴航貴陽醫院招聘筆試真題
- 2025廣州民用房屋租賃合同樣本
- 福建事業單位考試求職信撰寫技巧試題及答案
- 2025-2030中國金融云行業市場發展分析及發展趨勢與投資前景研究報告
- 家庭暖通合同協議
- 心力衰竭填空試題及答案
- 全新機房搬遷協議合同
- 企業品牌部管理制度
- 2025年04月包頭醫學院公開招聘28名事業單位工作人員筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 《美的電器審計案例》課件
- 2025-2030中國冰鞋行業市場發展分析與發展趨勢及投資風險研究報告
評論
0/150
提交評論