




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省西華縣東王營中學2023-2024學年中考數學考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,四邊形ABCD內接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°2.如圖的幾何體是由一個正方體切去一個小正方體形成的,它的主視圖是()A. B. C. D.3.關于反比例函數y=,下列說法中錯誤的是()A.它的圖象是雙曲線B.它的圖象在第一、三象限C.y的值隨x的值增大而減小D.若點(a,b)在它的圖象上,則點(b,a)也在它的圖象上4.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.5.已知關于x的一元二次方程有實數根,則m的取值范圍是()A. B. C. D.6.下列各運算中,計算正確的是()A. B.C. D.7.如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點A順時針旋轉60°得到△AED,則BE的長為()A.5 B.4 C.3 D.28.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.219.如圖,△ABC中AB兩個頂點在x軸的上方,點C的坐標是(﹣1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C′,且△A′B′C′與△ABC的位似比為2:1.設點B的對應點B′的橫坐標是a,則點B的橫坐標是()A. B. C. D.10.下列圖形中,是軸對稱圖形的是()A. B. C. D.11.的相反數是()A. B.- C. D.12.如圖,A(4,0),B(1,3),以OA、OB為邊作□OACB,反比例函數(k≠0)的圖象經過點C.則下列結論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個單位長度,點B落在反比例函數的圖象上.D.將□OACB繞點O旋轉180°,點C的對應點落在反比例函數圖象的另一分支上.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知邊長為2的正六邊形ABCDEF在平面直角坐標系中的位置如圖所示,點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續翻轉,每次翻轉60°,經過2018次翻轉之后,點B的坐標是______.14.方程x+1=的解是_____.15.如圖,△ABC中,AB=6,AC=4,AD、AE分別是其角平分線和中線,過點C作CG⊥AD于F,交AB于G,連接EF,則線段EF的長為_____.16.如圖,甲、乙兩船同時從港口出發,甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時后甲船到達點C,乙船正好到達甲船正西方向的點B,則乙船的航程為______海里(結果保留根號).17.如果一個正多邊形的中心角等于,那么這個正多邊形的邊數是__________.18.舉重比賽的總成績是選手的挺舉與抓舉兩項成績之和,若其中一項三次挑戰失敗,則該項成績為0,甲、乙是同一重量級別的舉重選手,他們近三年六次重要比賽的成績如下(單位:公斤):如果你是教練,要選派一名選手參加國際比賽,那么你會選擇_____(填“甲”或“乙”),理由是___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)我國南水北調中線工程的起點是丹江口水庫,按照工程計劃,需對原水庫大壩進行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位,如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的寬度AC.(結果精確到0.1米,參考數據:sin68°≈0.93,cos68°≈0.37,tan68°≈2.5,≈1.73)20.(6分)某校為了解本校九年級男生體育測試中跳繩成績的情況,隨機抽取該校九年級若干名男生,調查他們的跳繩成績(次/分),按成績分成,,,,五個等級.將所得數據繪制成如下統計圖.根據圖中信息,解答下列問題:該校被抽取的男生跳繩成績頻數分布直方圖(1)本次調查中,男生的跳繩成績的中位數在________等級;(2)若該校九年級共有男生400人,估計該校九年級男生跳繩成績是等級的人數.21.(6分)如圖,一位測量人員,要測量池塘的寬度的長,他過兩點畫兩條相交于點的射線,在射線上取兩點,使,若測得米,他能求出之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設計一個可行方案.22.(8分)如圖,直線與雙曲線相交于、兩點.(1),點坐標為.(2)在軸上找一點,在軸上找一點,使的值最小,求出點兩點坐標23.(8分)先化簡,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=1.24.(10分)如圖,一枚運載火箭從距雷達站C處5km的地面O處發射,當火箭到達點A,B時,在雷達站C處測得點A,B的仰角分別為34°,45°,其中點O,A,B在同一條直線上.求AC和AB的長(結果保留小數點后一位)(參考數據:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)25.(10分)如圖,拋物線y=﹣+bx+c交x軸于點A(﹣2,0)和點B,交y軸于點C(0,3),點D是x軸上一動點,連接CD,將線段CD繞點D旋轉得到DE,過點E作直線l⊥x軸,垂足為H,過點C作CF⊥l于F,連接DF.(1)求拋物線解析式;(2)若線段DE是CD繞點D順時針旋轉90°得到,求線段DF的長;(3)若線段DE是CD繞點D旋轉90°得到,且點E恰好在拋物線上,請求出點E的坐標.26.(12分)如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(A在B的左側),與y軸交于點C,點M是第二象限內拋物線上一點,BM交y軸于N.(1)求點A、B的坐標;(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.27.(12分)為加快城鄉對接,建設美麗鄉村,某地區對A、B兩地間的公路進行改建,如圖,A,B兩地之間有一座山.汽車原來從A地到B地需途經C地沿折線ACB行駛,現開通隧道后,汽車可直接沿直線AB行駛,已知BC=80千米,∠A=45°,∠B=30°.開通隧道前,汽車從A地到B地要走多少千米?開通隧道后,汽車從A地到B地可以少走多少千米?(結果保留根號)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】分析:先根據圓內接四邊形的性質得到然后根據圓周角定理求詳解:∵∴∴故選D.點睛:考查圓內接四邊形的性質,圓周角定理,掌握圓內接四邊形的對角互補是解題的關鍵.2、D【解析】試題分析:根據三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個正方形.3、C【解析】
根據反比例函數y=的圖象上點的坐標特征,以及該函數的圖象的性質進行分析、解答.【詳解】A.反比例函數的圖像是雙曲線,正確;B.k=2>0,圖象位于一、三象限,正確;C.在每一象限內,y的值隨x的增大而減小,錯誤;D.∵ab=ba,∴若點(a,b)在它的圖像上,則點(b,a)也在它的圖像上,故正確.故選C.【點睛】本題主要考查反比例函數的性質.注意:反比例函數的增減性只指在同一象限內.4、B【解析】
過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據勾股定理得到AF===,根據平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質得到=,求得AM=AF=,根據相似三角形的性質得到=,求得AN=AF=,即可得到結論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構造相似三角形是本題的關鍵,且求長度問題一般需用到勾股定理來解決,常作垂線5、C【解析】
解:∵關于x的一元二次方程有實數根,∴△==,解得m≥1,故選C.【點睛】本題考查一元二次方程根的判別式.6、D【解析】
利用同底數冪的除法法則、同底數冪的乘法法則、冪的乘方法則以及完全平方公式即可判斷.【詳解】A、,該選項錯誤;B、,該選項錯誤;C、,該選項錯誤;D、,該選項正確;故選:D.【點睛】本題考查了同底數冪的乘法、除法法則,冪的乘方法則以及完全平方公式,正確理解法則是關鍵.7、B【解析】
根據旋轉的性質可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點A順時針旋轉
60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點睛】本題考查了旋轉的性質,等邊三角形的判定與性質,主要利用了旋轉前后對應邊相等以及旋轉角的定義.8、A【解析】
根據已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,
∴cosB==,
∴∠B=45°,
∵sinC===,
∴AD=3,
∴CD==4,
∴BD=3,
則△ABC的面積是:×AD×BC=×3×(3+4)=.
故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.9、D【解析】
設點B的橫坐標為x,然后表示出BC、B′C的橫坐標的距離,再根據位似變換的概念列式計算.【詳解】設點B的橫坐標為x,則B、C間的橫坐標的長度為﹣1﹣x,B′、C間的橫坐標的長度為a+1,∵△ABC放大到原來的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故選:D.【點睛】本題考查了位似變換,坐標與圖形的性質,根據位似變換的定義,利用兩點間的橫坐標的距離等于對應邊的比列出方程是解題的關鍵.10、B【解析】分析:根據軸對稱圖形的概念求解.詳解:A、不是軸對稱圖形,故此選項不合題意;B、是軸對稱圖形,故此選項符合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不合題意;故選B.點睛:本題考查了軸對稱圖形,軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.11、C【解析】
根據只有符號不同的兩個數互為相反數進行解答即可.【詳解】與只有符號不同,所以的相反數是,故選C.【點睛】本題考查了相反數的定義,熟練掌握相反數的定義是解題的關鍵.12、B【解析】
先根據平行四邊形的性質得到點的坐標,再代入反比例函數(k≠0)求出其解析式,再根據反比例函數的圖象與性質對選項進行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(k≠0)的圖象經過點,,反比例函數解析式為.□OACB的面積為,正確;當時,,故錯誤;將□OACB向上平移12個單位長度,點的坐標變為,在反比例函數圖象上,故正確;因為反比例函數的圖象關于原點中心對稱,故將□OACB繞點O旋轉180°,點C的對應點落在反比例函數圖象的另一分支上,正確.故選:B.【點睛】本題綜合考查了平行四邊形的性質和反比例函數的圖象與性質,結合圖形,熟練掌握和運用相關性質定理是解答關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(4033,)【解析】
根據正六邊形的特點,每6次翻轉為一個循環組循環,用2018除以6,根據商和余數的情況確定出點B的位置,經過第2017次翻轉之后,點B的位置不變,仍在x軸上,由A(﹣2,0),可得AB=2,即可求得點B離原點的距離為4032,所以經過2017次翻轉之后,點B的坐標是(4032,0),經過2018次翻轉之后,點B在B′位置(如圖所示),則△BB′C為等邊三角形,可求得BN=NC=1,B′N=,由此即可求得經過2018次翻轉之后點B的坐標.然后求出翻轉前進的距離,過點C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后寫出點C的坐標即可.【詳解】設2018次翻轉之后,在B′點位置,∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續翻轉,每次翻轉60°,∴每6次翻轉為一個循環組,∵2018÷6=336余2,∴經過2016次翻轉為第336個循環,點B在初始狀態時的位置,而第2017次翻轉之后,點B的位置不變,仍在x軸上,∵A(﹣2,0),∴AB=2,∴點B離原點的距離=2×2016=4032,∴經過2017次翻轉之后,點B的坐標是(4032,0),經過2018次翻轉之后,點B在B′位置,則△BB′C為等邊三角形,此時BN=NC=1,B′N=,故經過2018次翻轉之后,點B的坐標是:(4033,).故答案為(4033,).【點睛】本題考查的是正多邊形和圓,涉及到坐標與圖形變化-旋轉,正六邊形的性質,確定出最后點B所在的位置是解題的關鍵.14、x=1【解析】
無理方程兩邊平方轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到無理方程的解.【詳解】兩邊平方得:(x+1)1=1x+5,即x1=4,
開方得:x=1或x=-1,
經檢驗x=-1是增根,無理方程的解為x=1.
故答案為x=115、1【解析】在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,則BG=AB?AG=6?4=2.又∵BE=CE,∴EF是△BCG的中位線,∴EF=BG=1.故答案是:1.16、10海里.【解析】
本題可以求出甲船行進的距離AC,根據三角函數就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達甲船正西方向的B點,∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.【點睛】本題主要考查的是解直角三角形的應用-方向角問題及三角函數的定義,理解方向角的定義是解決本題的關鍵.17、12.【解析】
根據正n邊形的中心角的度數為進行計算即可得到答案.【詳解】解:根據正n邊形的中心角的度數為,則n=360÷30=12,故這個正多邊形的邊數為12,故答案為:12.【點睛】本題考查的是正多邊形內角和中心角的知識,掌握中心角的計算公式是解題的關鍵.18、乙乙的比賽成績比較穩定.【解析】
觀察表格中的數據可知:甲的比賽成績波動幅度較大,故甲的比賽成績不穩定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩定,據此可得結論.【詳解】觀察表格中的數據可得,甲的比賽成績波動幅度較大,故甲的比賽成績不穩定;乙的比賽成績波動幅度較小,故乙的比賽成績比較穩定;所以要選派一名選手參加國際比賽,應該選擇乙,理由是乙的比賽成績比較穩定.故答案為乙,乙的比賽成績比較穩定.【點睛】本題主要考查了方差,方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.【解析】解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).∴(米).∴工程完工后背水坡底端水平方向增加的寬度AC約為37.3米.在Rt△BAE和Rt△DEC中,應用正切函數分別求出AE和CE的長即可求得AC的長.20、(1)C;(2)100【解析】
(1)根據中位數的定義即可作出判斷;(2)先算出樣本中C等級的百分比,再用總數乘以400即可.【詳解】解:(1)由直方圖中可知數據總數為40個,第20,21個數據的平均數為本組數據的中位數,第20,21個數據的等級都是C等級,故本次調查中,男生的跳繩成績的中位數在C等級;故答案為C.(2)400=100(人)答:估計該校九年級男生跳繩成績是等級的人數有100人.【點睛】本題考查了中位數的求法和用樣本數估計總體數據,理解相關知識是解題的關鍵.21、可以求出A、B之間的距離為111.6米.【解析】
根據,(對頂角相等),即可判定,根據相似三角形的性質得到,即可求解.【詳解】解:∵,(對頂角相等),∴,∴,∴,解得米.所以,可以求出、之間的距離為米【點睛】考查相似三角形的應用,掌握相似三角形的判定方法和性質是解題的關鍵.22、(1),;(1),.【解析】
(1)由點A在一次函數圖象上,將A(-1,a)代入y=x+4,求出a的值,得到點A的坐標,再由點A的坐標利用待定系數法求出反比例函數解析式,聯立兩函數解析式成方程組,解方程組即可求出點B坐標;
(1)作點A關于y軸的對稱點A′,作點B作關于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA.利用待定系數法求出直線A′B′的解析式,進而求出P、Q兩點坐標.【詳解】解:(1)把點A(-1,a)代入一次函數y=x+4,
得:a=-1+4,解得:a=3,
∴點A的坐標為(-1,3).
把點A(-1,3)代入反比例函數y=,
得:k=-3,
∴反比例函數的表達式y=-.
聯立兩個函數關系式成方程組得:解得:或∴點B的坐標為(-3,1).
故答案為3,(-3,1);(1)作點A關于y軸的對稱點A′,作點B作關于x軸的對稱點B′,連接A′B′,交x軸于點P,交y軸于點Q,連接PB、QA,如圖所示.
∵點B、B′關于x軸對稱,點B的坐標為(-3,1),
∴點B′的坐標為(-3,-1),PB=PB′,
∵點A、A′關于y軸對稱,點A的坐標為(-1,3),
∴點A′的坐標為(1,3),QA=QA′,
∴BP+PQ+QA=B′P+PQ+QA′=A′B′,值最小.
設直線A′B′的解析式為y=mx+n,
把A′,B′兩點代入得:解得:∴直線A′B′的解析式為y=x+1.
令y=0,則x+1=0,解得:x=-1,點P的坐標為(-1,0),
令x=0,則y=1,點Q的坐標為(0,1).【點睛】本題考查反比例函數與一次函數的交點問題、待定系數法求函數解析式、軸對稱中的最短線路問題,解題的關鍵是:(1)聯立兩函數解析式成方程組,解方程組求出交點坐標;(1)根據軸對稱的性質找出點P、Q的位置.本題屬于基礎題,難度適中,解決該題型題目時,聯立解析式成方程組,解方程組求出交點坐標是關鍵.23、(x﹣y)2;2.【解析】
首先利用多項式的乘法法則以及多項式與單項式的除法法則計算,然后合并同類項即可化簡,然后代入數值計算即可.【詳解】原式=x2﹣4y2+4xy(5y2-2xy)÷4xy=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,=(x﹣y)2,當x=2028,y=2時,原式=(2028﹣2)2=(﹣2)2=2.【點睛】本題考查的是整式的混合運算,正確利用多項式的乘法法則以及合并同類項法則是解題的關鍵.24、AC=6.0km,AB=1.7km;【解析】
在Rt△AOC,由∠的正切值和OC的長求出OA,在Rt△BOC,由∠BCO的大小和OC的長求出OA,而AB=OB-0A,即可得到答案。【詳解】由題意可得:∠AOC=90°,OC=5km.在Rt△AOC中,∵AC=,∴AC=≈6.0km,∵tan34°=,∴OA=OC?tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km.答:AC的長為6.0km,AB的長為1.7km.【點睛】本題主要考查三角函數的知識。25、(1)拋物線解析式為y=﹣;(2)DF=3;(3)點E的坐標為E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【解析】
(1)將點A、C坐標代入拋物線解析式求解可得;(2)證△COD≌△DHE得DH=OC,由CF⊥FH知四邊形OHFC是矩形,據此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)設點D的坐標為(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD繞點D順時針旋轉和逆時針旋轉兩種情況,表示出點E的坐標,代入拋物線求得t的值,從而得出答案.【詳解】(1)∵拋物線y=﹣+bx+c交x軸于點A(﹣2,0)、C(0,3),∴,解得:,∴拋物線解析式為y=﹣+x+3;(2)如圖1.∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.又∵DC=DE,∴△COD≌△DHE,∴DH=OC.又∵CF⊥FH,∴四邊形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;(3)如圖2,設點D的坐標為(t,0).∵點E恰好在拋物線上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分兩種情況討論:①當CD繞點D順時針旋轉時,點E的坐標為(t+3,t),代入拋物線y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以點E的坐標E1(4,1)或E2(﹣,﹣);②當CD繞點D逆時針旋轉時,點E的坐標為(t﹣3,﹣t),代入拋物線y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故點E的坐標E3(,﹣)或E4(,﹣);綜上所述:點E的坐標為E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【點睛】本題主要考查二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、全等三角形的判定與性質、矩形的判定與性質及分類討論思想的運用.26、(1)A(﹣4,0),B(3,0);(2);(3).【解析】
(1)設y=0,可求x的值,即求A,B的坐標;(2)作MD⊥x軸,由CO∥MD可得OD=3,把x=-3代入解析式可得M點坐標,可得ON的長度,根據S△BMC=,可求a的值;(3)過M點作ME∥AB,設NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 社區水資源保護宣傳考核試卷
- 印刷機技術創新展望考核試卷
- 遼寧省錦州市第七中學2024-2025學年初三下學期3月第二次診斷性檢測試題語文試題含解析
- 南京科技職業學院《中藥學》2023-2024學年第一學期期末試卷
- 山西財貿職業技術學院《醫學生理學》2023-2024學年第二學期期末試卷
- 江西省廬山市2024-2025學年初三下學期精英聯賽語文試題含解析
- 遼寧稅務高等專科學校《運動處方與實踐》2023-2024學年第二學期期末試卷
- 山西青年職業學院《大學生創新創業和就業指導》2023-2024學年第二學期期末試卷
- 江蘇海洋大學《村鎮規劃與建設實踐》2023-2024學年第二學期期末試卷
- 吉林省吉林地區普通高中友好學校聯合體第三十一屆2024-2025學年高三第二次適應性測試歷史試題含解析
- 集采藥品政策培訓會
- 公務員體檢須知
- 2025-2030清潔能行業市場發展分析與發展趨勢及投資前景預測報告
- 浙江國企招聘2025嘉興國際商務區投資建設集團有限公司招聘13人筆試參考題庫附帶答案詳解
- 衛生管理證書考試相關法規知識試題及答案
- 第四課 人民民主專政的社會主義國家 課件高中政治統編版必修三政治與法治
- 危重患者安全轉運
- 2025年美麗中國第六屆全國國家版圖知識競賽測試題庫及答案(中小學組)
- 八年級勞動教育測試題目及答案
- 消防中控考試試題及答案
- 2025年中考數學分類復習:銳角三角函數及其應用(56題)(原卷版)
評論
0/150
提交評論