2024年海南省省直轄縣數(shù)學八年級下冊期末經(jīng)典模擬試題含解析_第1頁
2024年海南省省直轄縣數(shù)學八年級下冊期末經(jīng)典模擬試題含解析_第2頁
2024年海南省省直轄縣數(shù)學八年級下冊期末經(jīng)典模擬試題含解析_第3頁
2024年海南省省直轄縣數(shù)學八年級下冊期末經(jīng)典模擬試題含解析_第4頁
2024年海南省省直轄縣數(shù)學八年級下冊期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024年海南省省直轄縣數(shù)學八年級下冊期末經(jīng)典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.關于一次函數(shù),下列結(jié)論正確的是()A.圖象過點 B.圖象與軸的交點是C.隨的增大而增大 D.函數(shù)圖象不經(jīng)過第三象限2.如圖在?ABCD中,已知AC=4cm,若△ACD的周長為13cm,則?ABCD的周長為()A.26cm B.24cm C.20cm D.18cm3.如圖,在邊長為4的正方形ABCD中,點E、F分別是邊BC、CD上的動點.且BE=CF,連接BF、DE,則BF+DE的最小值為()A. B. C. D.4.小王到瓷磚店購買一種正多邊形瓷磚鋪設無縫地板,他購買的瓷磚形狀不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形5.下列對二次函數(shù)y=x2﹣x的圖象的描述,正確的是()A.開口向下 B.對稱軸是y軸C.經(jīng)過原點 D.在對稱軸右側(cè)部分是下降的6.已知直線y=-x+6交x軸于點A,交y軸于點B,點P在線段OA上,將△PAB沿BP翻折,點A的對應點A′恰好落在y軸上,則的值為()A. B.1 C. D.7.要使分式有意義,則x應滿足的條件是()A.x≠1 B.x≠1或x≠0 C.x≠0 D.x>18.如圖,在平面直角坐標系xOy中,點A(0,2),B(4,0),點N為線段AB的中點,則點N的坐標為()A.(1,2) B.(4,2) C.(2,4) D.(2,1)9.下列四個三角形,與左圖中的三角形相似的是().A. B. C. D.10.正方形ABCD的邊長為2,以AD為邊作等邊△ADE,則點E到BC的距離是()A.2+ B.2- C.2+,2- D.4-二、填空題(每小題3分,共24分)11.如圖,中,,若動點從開始,按C→A→B→C的路徑運動(回到點C就停止),且速度為每秒,則P運動________秒時,為等腰三角形.(提示:直角三角形中,當斜邊和一條直角邊長分別為和時,另一條直角邊為)12.小明某學期的數(shù)學平時成績70分,期中考試80分,期末考試85分,若計算學期總評成績的方法如下:平時:期中:期末=3:3:4,則小明總評成績是________分.13.如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且AB=AE,延長AB與DE的延長線交于點F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正確的是_____.14.在平面內(nèi)將一個圖形繞某一定點旋轉(zhuǎn)________度,圖形的這種變化叫做中心對稱;15.某品牌運動服原來每件售價640元,經(jīng)過兩次降價,售價降低了280元,已知兩次降價的百分率相同,則每次降價的百分率為_____.16.已知等腰三角形的兩條中位線的長分別為2和3,則此等腰三角形的周長為_____.17.直線是由直線向上平移______個單位長度得到的一條直線.直線是由直線向右平移______個單位長度得到的一條直線.18.(2011貴州安順,17,4分)已知:如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在BC上運動,當△ODP是腰長為5的等腰三角形時,則P點的坐標為.三、解答題(共66分)19.(10分)如圖,四邊形是正方形,是等邊三角形,為對角線(不含點)上任意一點,將繞點逆時針旋轉(zhuǎn)得到,連接.(1)證明:;(2)當點在何處時,的值最小,并說明理由;(3)當?shù)淖钚≈禐闀r,則正方形的邊長為___________.20.(6分)如圖1,將邊長為1的正方形ABCD壓扁為邊長為1的菱形ABCD.在菱形ABCD中,∠A的大小為α,面積記為S.(1)請補全下表:30°45°60°90°120°135°150°S1(2)填空:由(1)可以發(fā)現(xiàn)正方形在壓扁的過程中,菱形的面積隨著∠A大小的變化而變化,不妨把菱形的面積S記為S(α).例如:當α=30°時,;當α=135°時,.由上表可以得到(______°);(______°),…,由此可以歸納出.(3)兩塊相同的等腰直角三角板按如圖的方式放置,AD=,∠AOB=α,試探究圖中兩個帶陰影的三角形面積是否相等,并說明理由(注:可以利用(2)中的結(jié)論).21.(6分)王老師為了了解學生在數(shù)學學習中的糾錯情況,收集整理了學生在作業(yè)和考試中的常見錯誤,編制了10道選擇題,每題3分,對他所教的八年級(5)班和八年級(6)班進行了檢測.并從兩班各隨機抽取10名學生的得分繪制成下列兩個統(tǒng)計圖.根據(jù)以上信息,整理分析數(shù)據(jù)如下:班級平均分(分)中位數(shù)(分)眾數(shù)(分)八年級(5)班a2424八年級(6)班24bc(1)求出表格中a,b,c的值;(2)你認為哪個班的學生糾錯得分情況比較整齊一些,通過計算說明理由.22.(8分)如圖,,平分交于點,于點,交于點,連接,求證:四邊形是菱形.23.(8分)因式分解(1);(2).24.(8分)閱讀理解:定義:有三個內(nèi)角相等的四邊形叫“和諧四邊形”.(1)在“和諧四邊形”中,若,則;(2)如圖,折疊平行四邊形紙片,使頂點,分別落在邊,上的點,處,折痕分別為,.求證:四邊形是“和諧四邊形”.25.(10分)如圖,在?ABCD中,CE平分∠BCD,交AD于點E,DF平分∠ADC,交BC于點F,CE與DF交于點P,連接EF,BP.(1)求證:四邊形CDEF是菱形;(2)若AB=2,BC=3,∠A=120°,求BP的值.26.(10分)解不等式組:,并寫出它的所有整數(shù)解.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】

A、把點的坐標代入關系式,檢驗是否成立;B、把y=0代入解析式求出x,判斷即可;C、根據(jù)一次項系數(shù)判斷;D、根據(jù)系數(shù)和圖象之間的關系判斷.【詳解】解:A、當x=1時,y=1.所以圖象不過(1,?1),故錯誤;B、把y=0代入y=?2x+3,得x=,所以圖象與x軸的交點是(,0),故錯誤;C、∵?2<0,∴y隨x的增大而減小,故錯誤;D、∵?2<0,3>0,∴圖象過一、二、四象限,不經(jīng)過第三象限,故正確.故選:D.【點睛】本題主要考查了一次函數(shù)的圖象和性質(zhì).常采用數(shù)形結(jié)合的思想求解.2、D【解析】

根據(jù)三角形周長的定義得到AD+DC=9cm.然后由平行四邊形的對邊相等的性質(zhì)來求平行四邊形的周長.【詳解】解:∵AC=4cm,若△ADC的周長為13cm,∴AD+DC=13﹣4=9(cm).又∵四邊形ABCD是平行四邊形,∴AB=CD,AD=BC,∴平行四邊形的周長為2(AB+BC)=18cm.故選D.3、C【解析】

連接AE,利用△ABE≌△BCF轉(zhuǎn)化線段BF得到BF+DE=AE+DE,則通過作A點關于BC對稱點H,連接DH交BC于E點,利用勾股定理求出DH長即可.【詳解】解:連接AE,如圖1,∵四邊形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作點A關于BC的對稱點H點,如圖2,連接BH,則A、B、H三點共線,連接DH,DH與BC的交點即為所求的E點.根據(jù)對稱性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,DH=∴BF+DE最小值為4.故選:C.【點睛】本題主要考查正方形的性質(zhì),軸對稱的性質(zhì),全等三角形的判定及性質(zhì),勾股定理,能夠作出輔助線將線段轉(zhuǎn)化是解題的關鍵.4、C【解析】

平面圖形鑲嵌的條件:判斷一種圖形是否能夠鑲嵌,只要看一看拼在同一頂點處的幾個角能否構(gòu)成周角,若能構(gòu)成360,則說明能夠進行平面鑲嵌;反之則不能.【詳解】解:因為用一種正多邊形鑲嵌,只有正三角形,正四邊形,正六邊形三種正多邊形能鑲嵌成一個平面圖案,所以小王到瓷磚店購買一種正多邊形瓷磚鋪設無縫地板,他購買的瓷磚形狀不可以是正五邊形.故選:C【點睛】用一種正多邊形鑲嵌,只有正三角形,正四邊形,正六邊形三種正多邊形能鑲嵌成一個平面圖案.5、C【解析】【分析】根據(jù)拋物線的開口方向、對稱軸公式以及二次函數(shù)性質(zhì)逐項進行判斷即可得答案.【詳解】A、∵a=1>0,∴拋物線開口向上,選項A不正確;B、∵﹣,∴拋物線的對稱軸為直線x=,選項B不正確;C、當x=0時,y=x2﹣x=0,∴拋物線經(jīng)過原點,選項C正確;D、∵a>0,拋物線的對稱軸為直線x=,∴當x>時,y隨x值的增大而增大,選項D不正確,故選C.【點睛】本題考查了二次函數(shù)的性質(zhì):二次函數(shù)y=ax2+bx+c(a≠0),對稱軸直線x=-,當a>0時,拋物線y=ax2+bx+c(a≠0)的開口向上,當a<0時,拋物線y=ax2+bx+c(a≠0)的開口向下,c=0時拋物線經(jīng)過原點,熟練掌握相關知識是解題的關鍵.6、C【解析】

設:PA=a=PA′,則OP=6-a,OA′=-6,由勾股定理得:PA′2=OP2+OA′2,即可求解.【詳解】解:如圖,y=-x+6,令x=0,則y=6,令y=0,則x=6,故點A、B的坐標分別為(6,0)、(0,6),則AB==A′B,設:PA=a=PA′,則OP=6-a,OA′=-6,由勾股定理得:PA′2=OA′2+OP2,即(a)2=(-6)2+(6-a)2,解得:a=12-,則PA=12-,OP=?6,則.故選:C.【點睛】本題考查的是一次函數(shù)圖象上點的坐標特征,關鍵在于在畫圖的基礎上,利用勾股定理:PA′2=OA′2+OP2,從而求出PA、OP線段的長度,進而求解.7、A【解析】

根據(jù)分式有意義的條件:分母≠0,即可得出結(jié)論.【詳解】解:由分式有意義,得x-1≠0,解得x≠1.故選:A.【點睛】此題考查的是分式有意義的條件,掌握分式有意義的條件:分母≠0是解決此題的關鍵.8、D【解析】

根據(jù)三角形的中位線的性質(zhì)和點的坐標,解答即可.【詳解】過N作NE⊥y軸,NF⊥x軸,∴NE∥x軸,NF∥y軸,∵點A(0,2),B(4,0),點N為線段AB的中點,∴NE=2,NF=1,∴點N的坐標為(2,1),故選:D.【點睛】本題主要考查坐標與圖形的性質(zhì),掌握三角形的中位線的性質(zhì)和點的坐標的定義,是解題的關鍵.9、B【解析】

本題主要應用兩三角形相似的判定定理,三邊對應成比例,做題即可.【詳解】解:設單位正方形的邊長為1,給出的三角形三邊長分別為,,.

A、三角形三邊分別是2,,3,與給出的三角形的各邊不成比例,故A選項錯誤;

B、三角形三邊2,4,,與給出的三角形的各邊成比例,故B選項正確;C、三角形三邊2,3,,與給出的三角形的各邊不成比例,故C選項錯誤;D、三角形三邊,,4,與給出的三角形的各邊不成正比例,故D選項錯誤.

故選:B.【點睛】此題考查了相似三角形的判定,注意三邊對應成比例的兩三角形相似.10、C【解析】

由等邊三角形的性質(zhì)可得點E到AD上的距離為,分兩種情況可求點E到BC的距離.【詳解】解:∵等邊△ADE的邊長為2∴點E到AD上的距離EG為,當△ADE在正方形外面,∴點E到BC的距離=2+當△ADE在正方形里面∴點E到BC的距離=2-故選:C.【點睛】本題考查了正方形的性質(zhì),等邊三角形的性質(zhì),熟練運用正方形的性質(zhì)是本題的關鍵.二、填空題(每小題3分,共24分)11、3,5.4,6,6.5【解析】

作CD⊥AB于D,根據(jù)勾股定理可求CD,BD的長度,分BP=BC,CP=BP,BC=CP三種情況討論,可得t的值【詳解】點在上,時,秒;點在上,時,過點作交于點,點在上,時,④點在上,時,過點作交于點,為的中位線,【點睛】本題考查了勾股定理,等腰三角形的性質(zhì),關鍵是利用分類思想解決問題.12、79【解析】

解:本學期數(shù)學總評分=70×30%+80×30%+85×40%=79(分)故答案為7913、①②⑤【解析】

由平行四邊形的性質(zhì)得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等邊三角形,②正確;則∠ABE=∠EAD=60°,由SAS證明△ABC≌△EAD,①正確;由△FCD與△ABD等底(AB=CD)等高(AB與CD間的距離相等),得出S△FCD=S△ABD,由△AEC與△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.⑤正確.【詳解】∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等邊三角形;②正確;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正確;∵△FCD與△ABC等底(AB=CD)等高(AB與CD間的距離相等),∴S△FCD=S△ABC,又∵△AEC與△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正確.若AD與AF相等,即∠AFD=∠ADF=∠DEC,即EC=CD=BE,即BC=2CD,題中未限定這一條件,∴③④不一定正確;故答案為:①②⑤.【點睛】此題考查了平行四邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì).此題比較復雜,注意將每個問題仔細分析.14、1【解析】

根據(jù)中心對稱的定義即可求解.【詳解】在平面內(nèi)將一個圖形繞某一定點旋轉(zhuǎn)1度,圖形的這種變化叫做中心對稱.故答案為1.【點睛】本題考查了中心對稱的定義:把一個圖形繞著某個點旋轉(zhuǎn)1°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心,這兩個圖形中的對應點叫做關于中心的對稱點.掌握定義是解題的關鍵.15、25%.【解析】

設每次降價的百分率為x,根據(jù)題意可得,640×(1-降價的百分率)2=(640-280),據(jù)此方程解答即可.【詳解】設每次降價的百分率為x由題意得:解得:x=0.25答:每次降低的百分率是25%故答案為:25%【點睛】本題考查一元二次方程的應用,屬于典型題,審清題意,列出方程是解題關鍵.16、14或1【解析】

因為三角形中位線的長度是相對應邊長的一半,所以此三角形有一條邊為4,一條為6;那么就有兩種情況,或腰為4,或腰為6,再分別去求三角形的周長.【詳解】解:∵等腰三角形的兩條中位線長分別為2和3,∴等腰三角形的兩邊長為4,6,當腰為6時,則三邊長為6,6,4;周長為1;當腰為4時,則三邊長為4,4,6;周長為14;故答案為:14或1.【點睛】此題涉及到三角形中位線與其三邊的關系,解答此題時要注意分類討論,不要漏解.17、2,1.【解析】

根據(jù)平移中解析式的變化規(guī)律是:橫坐標左移加,右移減;縱坐標上移加,下移減,可得出答案.【詳解】解:直線是由直線向上平移2個單位長度得到的一條直線.由直線向右平移1個單位長度得到.故答案是:2;1.【點睛】本題考查一次函數(shù)圖象與幾何變換,掌握平移中解析式的變化規(guī)律是:左加右減;上加下減是解題的關鍵.18、P(5,5)或(4,5)或(8,5)【解析】試題解析:由題意,當△ODP是腰長為4的等腰三角形時,有三種情況:(5)如圖所示,PD=OD=4,點P在點D的左側(cè).過點P作PE⊥x軸于點E,則PE=5.在Rt△PDE中,由勾股定理得:DE=,∴OE=OD-DE=4-5=4,∴此時點P坐標為(4,5);(4)如圖所示,OP=OD=4.過點P作PE⊥x軸于點E,則PE=5.在Rt△POE中,由勾股定理得:OE=,∴此時點P坐標為(5,5);(5)如圖所示,PD=OD=4,點P在點D的右側(cè).過點P作PE⊥x軸于點E,則PE=5.在Rt△PDE中,由勾股定理得:DE=,∴OE=OD+DE=4+5=8,∴此時點P坐標為(8,5).綜上所述,點P的坐標為:(4,5)或(5,5)或(8,5).考點:5.矩形的性質(zhì);4.坐標與圖形性質(zhì);5.等腰三角形的性質(zhì);5.勾股定理.三、解答題(共66分)19、(1)見解析;(2)當點位于與的交點處時,的值最小,理由見解析;(3).【解析】

(1)

由題意得MB=NB,∠ABN=15°,

所以∠EBN=45°,

容易證出△AMB≌△ENB;

(2)根據(jù)"兩點之間線段最短”,當M點位于BD與CE的交點處時,AM+BM+CM的值最小,即等于EC的長;

(3)過E點作EF⊥BC交CB的延長線于F,由題意求出∠EBF=30°,

設正方形的邊長為x,在Rt△EFC中,根據(jù)勾股定理求得正方形的邊長為.【詳解】解:(1)∵是等邊三角形,∴,∵,∴,即.又∵,∴;(2)如圖,連接,當點位于與的交點處時,的值最小.理由如下:連接,由(1)知,,∴.∵,∴是等邊三角形,∴.∴根據(jù)“兩點之間線段最短”,得最短.當點位于與的交點處時,的值最小,即等于的長.(3)正方形的邊長為邊.過點作交的延長線于,∴.設正方形的邊長為,則,.在中,∵,∴,解得,(舍去負值).∴正方形的邊長為.【點睛】此題是四邊形的綜合題,考查里正方形的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定及性質(zhì),勾股定理,最短路徑問題,解題中注意綜合各知識點.20、(1);;;;(2)120;30;α;(3)兩個帶陰影的三角形面積相等,證明見解析.【解析】分析:(1)過D作DE⊥AB于點E,當α=45°時,可求得DE,從而可求得菱形的面積S,同理可求當α=60°時S的值,當α=120°時,過D作DF⊥AB交BA的延長線于點F,則可求得DF,可求得S的值,同理當α=135°時S的值;(2)根據(jù)表中所計算出的S的值,可得出答案;(3)將△ABO沿AB翻折得到菱形AEBO,將△CDO沿CD翻折得到菱形OCFD.利用(2)中的結(jié)論,可求得△AOB和△COD的面積,從而可求得結(jié)論.詳解:(1)當α=45°時,如圖1,過D作DE⊥AB于點E,則DE=AD=,∴S=AB?DE=,同理當α=60°時S=,當α=120°時,如圖2,過D作DF⊥AB,交BA的延長線于點F,則∠DAE=60°,∴DF=AD=,∴S=AB?DF=,同理當α=150°時,可求得S=,故表中依次填寫:;;;;(2)由(1)可知S(60°)=S(120°),S(150°)=S(30°),∴S(180°-α)=S(α)故答案為:120;30;α;(3)兩個帶陰影的三角形面積相等.證明:如圖3將△ABO沿AB翻折得到菱形AMBO,將△CDO沿CD翻折得到菱形OCND.∵∠AOD=∠COB=90°,∴∠COD+∠AOB=180°,∴S△AOB=S菱形AMBO=S(α)S△CDO=S菱形OCND=S(180°-α)由(2)中結(jié)論S(α)=S(180°-α)∴S△AOB=S△CDO.點睛:本題為四邊形的綜合應用,涉及知識點有菱形的性質(zhì)和面積、解直角三角形及轉(zhuǎn)化思想等.在(1)中求得菱形的高是解題的關鍵,在(2)中利用好(1)中的結(jié)論即可,在(3)中把三角形的面積轉(zhuǎn)化成菱形的面積是解題的關鍵.本題考查知識點較基礎,難度不大.21、(1)24,27,27(2)5班學生糾錯得分情況比較整齊一些【解析】

(1)將條形統(tǒng)計圖中數(shù)據(jù)相加再除以10,即可得到樣本平均數(shù);找到折線統(tǒng)計圖中出現(xiàn)次數(shù)最多的數(shù)和處于中間位置的數(shù),即為眾數(shù)和中位數(shù);(2)計算出兩個班的方差,方差越小越整齊.【詳解】解:(1)八年級(5)班:(21×3+24×4+27×3)=24,∴a=24,八年級(6)班得分:21271527302718273018從小到大排列:15181821272727273030∴中位數(shù)b=27,眾數(shù)c=27(2)八年級(5)班的方差:(9×3+0×4+9×3)=5.4,八年級(6)班的方差:(81+36×3+9+9×4+36×2)=30.6,∵(5)班的方差小,∴(5)班學生糾錯得分情況比較整齊一些【點睛】本題考查了條形統(tǒng)計圖,方差、算術平均數(shù)、眾數(shù)和中位數(shù),熟悉各統(tǒng)計量的意義及計算方法是解題的關鍵.22、見解析【解析】

根據(jù)題意首先利用ASA證明,再得出四邊形是平行四邊形,再利用四邊相等來證明四邊形是菱形即可.【詳解】證明:∵,∴,∵平分交于點,∴,∴,∴,∵,∴,在和中,,,∴,∴,∴四邊形是平行四邊形,∵,∴四邊形是菱形【點睛】此題考查全等三角形的判定與性質(zhì),平行四邊形的判定,菱形的判定,解題關鍵在于利用平行線的性質(zhì)來求證.23、(1);(2)【解析】

(1)首先找出公因式,進而利用平方差公式分解因式即可;

(2)利用完全平方公式分解因式即可.【詳解】解:(1)=2m(m2-4)=;(2)=【點睛】此題主要考查了提公因式法以及公式法進行分解因式,正確找出公因式是解題關鍵.24、(1);(2)見解析.【解析】

(1)根據(jù)四邊形的內(nèi)角和是360°,即可得到結(jié)論;(2)由四邊形DEBF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論