




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年安徽省明光市明光鎮映山中學中考數學最后沖刺濃縮精華卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.關于x的一元二次方程x2+8x+q=0有兩個不相等的實數根,則q的取值范圍是()A.q<16 B.q>16C.q≤4 D.q≥42.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.463.若點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,則m+n的值是()A.﹣5B.﹣3C.3D.14.在0,﹣2,3,四個數中,最小的數是()A.0 B.﹣2 C.3 D.5.數據”1,2,1,3,1”的眾數是()A.1B.1.5C.1.6D.36.有15位同學參加歌詠比賽,所得的分數互不相同,取得分前8位同學進入決賽.某同學知道自己的分數后,要判斷自己能否進入決賽,他只需知道這15位同學的()A.平均數 B.中位數 C.眾數 D.方差7.若一次函數y=(2m﹣3)x﹣1+m的圖象不經過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤8.若a與﹣3互為倒數,則a=()A.3 B.﹣3 C.13 D.-9.已知關于x的不等式組至少有兩個整數解,且存在以3,a,7為邊的三角形,則a的整數解有()A.4個 B.5個 C.6個 D.7個10.如圖,已知函數y=﹣與函數y=ax2+bx的交點P的縱坐標為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>011.下列圖形是由同樣大小的棋子按照一定規律排列而成的,其中,圖①中有5個棋子,圖②中有10個棋子,圖③中有16個棋子,…,則圖⑥________中有個棋子()A.31 B.35 C.40 D.5012.如圖是由長方體和圓柱組成的幾何體,它的俯視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,函數y=(x<0)的圖像與直線y=-x交于A點,將線段OA繞O點順時針旋轉30°,交函數y=(x<0)的圖像于B點,得到線段OB,若線段AB=3-,則k=_______________________.14.如圖1,AB是半圓O的直徑,正方形OPNM的對角線ON與AB垂直且相等,Q是OP的中點.一只機器甲蟲從點A出發勻速爬行,它先沿直徑爬到點B,再沿半圓爬回到點A,一臺微型記錄儀記錄了甲蟲的爬行過程.設甲蟲爬行的時間為t,甲蟲與微型記錄儀之間的距離為y,表示y與t的函數關系的圖象如圖2所示,那么微型記錄儀可能位于圖1中的()A.點MB.點NC.點PD.點Q15.計算:|﹣3|+(﹣1)2=.16.一元二次方程x2+mx+3=0的一個根為-1,則另一個根為.17.科技改變生活,手機導航極大方便了人們的出行.如圖,小明一家自駕到古鎮C游玩,到達A地后,導航顯示車輛應沿北偏西60°方向行駛6千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮C.小明發現古鎮C恰好在A地的正北方向,則B、C兩地的距離是_____千米.18.如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.其中正確的序號是(把你認為正確的都填上).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)直線y1=kx+b與反比例函數的圖象分別交于點A(m,4)和點B(n,2),與坐標軸分別交于點C和點D.(1)求直線AB的解析式;(2)根據圖象寫出不等式kx+b﹣≤0的解集;(3)若點P是x軸上一動點,當△COD與△ADP相似時,求點P的坐標.20.(6分)為了解中學生“平均每天體育鍛煉時間”的情況,某地區教育部門隨機調查了若干名中學生,根據調查結果制作統計圖①和圖②,請根據相關信息,解答下列問題:(1)本次接受隨機抽樣調查的中學生人數為_______,圖①中m的值是_____;(2)求本次調查獲取的樣本數據的平均數、眾數和中位數;(3)根據統計數據,估計該地區250000名中學生中,每天在校體育鍛煉時間大于等于1.5h的人數.21.(6分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.22.(8分)在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,連接PM、PB,設A、P兩點間的距離為xcm,PM+PB長度為ycm.小東根據學習函數的經驗,對函數y隨自變量x的變化而變化的規律進行了探究.下面是小東的探究過程,請補充完整:(1)通過取點、畫圖、測量,得到了x與y的幾組值,如表:x/cm012345y/cm6.04.84.56.07.4(說明:補全表格時相關數值保留一位小數)(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象.(3)結合畫出的函數圖象,解決問題:PM+PB的長度最小值約為______cm.23.(8分)如圖,在平面直角坐標系中有三點(1,2),(3,1),(-2,-1),其中有兩點同時在反比例函數的圖象上,將這兩點分別記為A,B,另一點記為C,(1)求出的值;(2)求直線AB對應的一次函數的表達式;(3)設點C關于直線AB的對稱點為D,P是軸上的一個動點,直接寫出PC+PD的最小值(不必說明理由).24.(10分)如圖,在平面直角坐標系中,直線y=x+4與x軸、y軸分別交于A、B兩點,拋物線y=-x2+bx+c經過A、B兩點,并與x軸交于另一點C(點C點A的右側),點P是拋物線上一動點.(1)求拋物線的解析式及點C的坐標;(2)若點P在第二象限內,過點P作PD⊥軸于D,交AB于點E.當點P運動到什么位置時,線段PE最長?此時PE等于多少?(3)如果平行于x軸的動直線l與拋物線交于點Q,與直線AB交于點N,點M為OA的中點,那么是否存在這樣的直線l,使得△MON是等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.25.(10分)如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點E為AB的中點,DE∥BC.(1)求證:BD平分∠ABC;(2)連接EC,若∠A=30°,DC=,求EC的長.26.(12分)某商場計劃購進A,B兩種新型節能臺燈共100盞,A型燈每盞進價為30元,售價為45元;B型臺燈每盞進價為50元,售價為70元.(1)若商場預計進貨款為3500元,求A型、B型節能燈各購進多少盞?根據題意,先填寫下表,再完成本問解答:型號A型B型購進數量(盞)x_____購買費用(元)__________(2)若商場規定B型臺燈的進貨數量不超過A型臺燈數量的3倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?27.(12分)某市為了解市民對已閉幕的某一博覽會的總體印象,利用最新引進的“計算機輔助電話訪問系統”(簡稱CATI系統),采取電腦隨機抽樣的方式,對本市年齡在16~65歲之間的居民,進行了400個電話抽樣調查.并根據每個年齡段的抽查人數和該年齡段對博覽會總體印象感到滿意的人數繪制了下面的圖(1)和圖(1)(部分)根據上圖提供的信息回答下列問題:(1)被抽查的居民中,人數最多的年齡段是歲;(1)已知被抽查的400人中有83%的人對博覽會總體印象感到滿意,請你求出31~40歲年齡段的滿意人數,并補全圖1.注:某年齡段的滿意率=該年齡段滿意人數÷該年齡段被抽查人數×100%.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】∵關于x的一元二次方程x2+8x+q=0有兩個不相等的實數根,∴△>0,即82-4q>0,∴q<16,故選A.2、B【解析】
連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點睛】本題考查了相似三角形的應用與三角形的面積,解題的關鍵是熟練的掌握相似三角形的應用與三角形的面積的相關知識點.3、D【解析】【分析】根據關于y軸的對稱點的坐標特點:橫坐標互為相反數,縱坐標不變,據此求出m、n的值,代入計算可得.【詳解】∵點A(1+m,1﹣n)與點B(﹣3,2)關于y軸對稱,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故選D.【點睛】本題考查了關于y軸對稱的點,熟練掌握關于y軸對稱的兩點的橫坐標互為相反數,縱坐標不變是解題的關鍵.4、B【解析】
根據實數比較大小的法則進行比較即可.【詳解】∵在這四個數中3>0,>0,-2<0,∴-2最小.故選B.【點睛】本題考查的是實數的大小比較,即正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小.5、A【解析】
眾數指一組數據中出現次數最多的數據,根據眾數的定義就可以求解.【詳解】在這一組數據中1是出現次數最多的,故眾數是1.故選:A.【點睛】本題為統計題,考查眾數的意義.眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個.6、B【解析】
由中位數的概念,即最中間一個或兩個數據的平均數;可知15人成績的中位數是第8名的成績.根據題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數,比較即可.【詳解】解:由于15個人中,第8名的成績是中位數,故小方同學知道了自己的分數后,想知道自己能否進入決賽,還需知道這十五位同學的分數的中位數.故選B.【點睛】此題主要考查統計的有關知識,主要包括平均數、中位數、眾數的意義.反映數據集中程度的統計量有平均數、中位數、眾數等,各有局限性,因此要對統計量進行合理的選擇和恰當的運用.7、B【解析】
根據一次函數的性質,根據不等式組即可解決問題;【詳解】∵一次函數y=(2m-3)x-1+m的圖象不經過第三象限,∴,解得1≤m<.故選:B.【點睛】本題考查一次函數的圖象與系數的關系等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考常考題型.8、D【解析】試題分析:根據乘積是1的兩個數互為倒數,可得3a=1,∴a=13故選C.考點:倒數.9、A【解析】
依據不等式組至少有兩個整數解,即可得到a>5,再根據存在以3,a,7為邊的三角形,可得4<a<10,進而得出a的取值范圍是5<a<10,即可得到a的整數解有4個.【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個整數解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數解有4個,故選:A.【點睛】此題考查的是一元一次不等式組的解法和三角形的三邊關系的運用,求不等式組的解集應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.10、C【解析】
首先求出P點坐標,進而利用函數圖象得出不等式ax2+bx+>1的解集.【詳解】∵函數y=﹣與函數y=ax2+bx的交點P的縱坐標為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.【點睛】本題考查了反比例函數圖象上點的坐標特征,解題的關鍵是正確得出P點坐標.11、C【解析】
根據題意得出第n個圖形中棋子數為1+2+3+…+n+1+2n,據此可得.【詳解】解:∵圖1中棋子有5=1+2+1×2個,圖2中棋子有10=1+2+3+2×2個,圖3中棋子有16=1+2+3+4+3×2個,…∴圖6中棋子有1+2+3+4+5+6+7+6×2=40個,故選C.【點睛】本題考查了圖形的變化規律,通過從一些特殊的圖形變化中發現不變的因素或按規律變化的因素,然后推廣到一般情況.12、A【解析】分析:根據從上邊看得到的圖形是俯視圖,可得答案.詳解:從上邊看外面是正方形,里面是沒有圓心的圓,故選A.點睛:本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、-3【解析】
作AC⊥x軸于C,BD⊥x軸于D,AE⊥BD于E點,設A點坐標為(3a,-a),則OC=-3a,AC=-a,利用勾股定理計算出OA=-2a,得到∠AOC=30°,再根據旋轉的性質得到OA=OB,∠BOD=60°,易證得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,則△ABE為等腰直角三角形,利用等腰直角三角形的性質得到3-=(-3a+a),求出a=1,確定A點坐標為(3,-),然后把A(3,-)代入函數y=即可得到k的值.【詳解】作AC⊥x軸與C,BD⊥x軸于D,AE⊥BD于E點,如圖,點A在直線y=-x上,可設A點坐標為(3a,-a),在Rt△OAC中,OC=-3a,AC=-a,∴OA==-2a,∴∠AOC=30°,∵直線OA繞O點順時針旋轉30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-a,BD=OC=-3a,∵四邊形ACDE為矩形,∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,∴AE=BE,∴△ABE為等腰直角三角形,∴AB=AE,即3-=(-3a+a),解得a=1,∴A點坐標為(3,-),而點A在函數y=的圖象上,∴k=3×(-)=-3.故答案為-3.【點睛】本題是反比例函數綜合題:點在反比例函數圖象上,則點的橫縱坐標滿足其解析式;利用勾股定理、旋轉的性質以及等腰直角三角形的性質進行線段的轉換與計算.14、D【解析】D.試題分析:應用排他法分析求解:若微型記錄儀位于圖1中的點M,AM最小,與圖2不符,可排除A.若微型記錄儀位于圖1中的點N,由于AN=BM,即甲蟲從A到B時是對稱的,與圖2不符,可排除B.若微型記錄儀位于圖1中的點P,由于甲蟲從A到OP與圓弧的交點時甲蟲與微型記錄儀之間的距離y逐漸減小;甲蟲從OP與圓弧的交點到A時甲蟲與微型記錄儀之間的距離y逐漸增大,即y與t的函數關系的圖象只有兩個趨勢,與圖2不符,可排除C.故選D.考點:1.動點問題的函數圖象分析;2.排他法的應用.15、4.【解析】
|﹣3|+(﹣1)2=4,故答案為4.16、-1.【解析】
因為一元二次方程的常數項是已知的,可直接利用兩根之積的等式求解.【詳解】∵一元二次方程x2+mx+1=0的一個根為-1,設另一根為x1,由根與系數關系:-1?x1=1,解得x1=-1.故答案為-1.17、3【解析】
作BE⊥AC于E,根據正弦的定義求出BE,再根據正弦的定義計算即可.【詳解】解:作BE⊥AC于E,在Rt△ABE中,sin∠BAC=,∴BE=AB?sin∠BAC=,由題意得,∠C=45°,∴BC==(千米),故答案為3.【點睛】本題考查的是解直角三角形的應用-方向角問題,掌握方向角的概念、熟記銳角三角函數的定義是解題的關鍵.18、①②④【解析】分析:∵四邊形ABCD是正方形,∴AB=AD。∵△AEF是等邊三角形,∴AE=AF。∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①說法正確。∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。∵∠AEF=60°,∴∠AEB=75°。∴②說法正確。如圖,連接AC,交EF于G點,∴AC⊥EF,且AC平分EF。∵∠CAD≠∠DAF,∴DF≠FG。∴BE+DF≠EF。∴③說法錯誤。∵EF=2,∴CE=CF=。設正方形的邊長為a,在Rt△ADF中,,解得,∴。∴。∴④說法正確。綜上所述,正確的序號是①②④。三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=﹣x+6;(2)0<x<2或x>4;(3)點P的坐標為(2,0)或(﹣3,0).【解析】
(1)將點坐標代入雙曲線中即可求出,最后將點坐標代入直線解析式中即可得出結論;(2)根據點坐標和圖象即可得出結論;(3)先求出點坐標,進而求出,設出點P坐標,最后分兩種情況利用相似三角形得出比例式建立方程求解即可得出結論.【詳解】解:(1)∵點和點在反比例函數的圖象上,,解得,即把兩點代入中得,解得:,所以直線的解析式為:;(2)由圖象可得,當時,的解集為或.(3)由(1)得直線的解析式為,當時,y=6,,,當時,,∴點坐標為.設P點坐標為,由題可以,點在點左側,則由可得①當時,,,解得,故點P坐標為②當時,,,解得,即點P的坐標為因此,點P的坐標為或時,與相似.【點睛】此題是反比例函數綜合題,主要考查了待定系數法,相似三角形的性質,用方程的思想和分類討論的思想解決問題是解本題的關鍵.20、(1)250、12;(2)平均數:1.38h;眾數:1.5h;中位數:1.5h;(3)160000人;【解析】
(1)根據題意,本次接受調查的學生總人數為各個金額人數之和,用總概率減去其他金額的概率即可求得m值.(2)平均數為一組數據中所有數據之和再除以這組數據的個數;眾數是在一組數據中出現次數最多的數;中位數是將一組數據按大小順序排列,處于最中間位置的一個數據,或是最中間兩個數據的平均數,據此求解即可.(3)根據樣本估計總體,用“每天在校體育鍛煉時間大于等于1.5h的人數”的概率乘以全校總人數求解即可.【詳解】(1)本次接受隨機抽樣調查的中學生人數為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數為=1.38(h),眾數為1.5h,中位數為=1.5h;(3)估計每天在校體育鍛煉時間大于等于1.5h的人數約為250000×=160000人.【點睛】本題主要考查數據的收集、處理以及統計圖表.21、見解析【解析】
根據角平分線的性質和直角三角形性質求∠BAF=∠ACG.進一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【點睛】此題重點考查學生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關鍵.22、(1)2.1;(2)見解析;(3)x=2時,函數有最小值y=4.2【解析】
(1)通過作輔助線,應用三角函數可求得HM+HN的值即為x=2時,y的值;(2)可在網格圖中直接畫出函數圖象;(3)由函數圖象可知函數的最小值.【詳解】(1)當點P運動到點H時,AH=3,作HN⊥AB于點N.∵在正方形ABCD中,AB=4cm,AC為對角線,AC上有一動點P,M是AB邊的中點,∴∠HAN=42°,∴AN=HN=AH?sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.故答案為:2.1;(2)(3)根據函數圖象可知,當x=2時,函數有最小值y=4.2.故答案為:4.2.【點睛】本題考查了二次函數的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.23、(2)2;(2)y=x+2;(3).【解析】
(2)確定A、B、C的坐標即可解決問題;(2)理由待定系數法即可解決問題;(3)作D關于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′的長.【詳解】解:(2)∵反比例函數y=的圖象上的點橫坐標與縱坐標的積相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)設直線AB的解析式為y=mx+n,則有,解得,∴直線AB的解析式為y=x+2.(3)∵C、D關于直線AB對稱,∴D(0,4)作D關于x軸的對稱點D′(0,-4),連接CD′交x軸于P,此時PC+PD的值最小,最小值=CD′=.【點睛】本題考查反比例函數圖象上的點的特征,一次函數的性質、反比例函數的性質、軸對稱最短問題等知識,解題的關鍵是熟練掌握待定系數法確定函數解析式,學會利用軸對稱解決最短問題.24、(1)y=-x2-2x+1,C(1,0)(2)當t=-2時,線段PE的長度有最大值1,此時P(-2,6)(2)存在這樣的直線l,使得△MON為等腰三角形.所求Q點的坐標為(,2)或(,2)或(,2)或(,2)【解析】解:(1)∵直線y=x+1與x軸、y軸分別交于A、B兩點,∴A(-1,0),B(0,1).∵拋物線y=-x2+bx+c經過A、B兩點,∴,解得.∴拋物線解析式為y=-x2-2x+1.令y=0,得-x2-2x+1=0,解得x1=-1,x2=1,∴C(1,0).(2)如圖1,設D(t,0).∵OA=OB,∴∠BAO=15°.∴E(t,t+1),P(t,-t2-2t+1).PE=yP-yE=-t2-2t+1-t-1=-t2-1t=-(t+2)2+1.∴當t=-2時,線段PE的長度有最大值1,此時P(-2,6).(2)存在.如圖2,過N點作NH⊥x軸于點H.設OH=m(m>0),∵OA=OB,∴∠BAO=15°.∴NH=AH=1-m,∴yQ=1-m.又M為OA中點,∴MH=2-m.當△MON為等腰三角形時:①若MN=ON,則H為底邊OM的中點,∴m=1,∴yQ=1-m=2.由-xQ2-2xQ+1=2,解得.∴點Q坐標為(,2)或(,2).②若MN=OM=2,則在Rt△MNH中,根據勾股定理得:MN2=NH2+MH2,即22=(1-m)2+(2-m)2,化簡得m2-6m+8=0,解得:m1=2,m2=1(不合題意,舍去).∴yQ=2,由-xQ2-2xQ+1=2,解得.∴點Q坐標為(,2)或(,2).③若ON=OM=2,則在Rt△NOH中,根據勾股定理得:ON2=NH2+OH2,即22=(1-m)2+m2,化簡得m2-1m+6=0,∵△=-8<0,∴此時不存在這樣的直線l,使得△MON為等腰三角形.綜上所述,存在這樣的直線l,使得△MON為等腰三角形.所求Q點的坐標為(,2)或(,2)或(,2)或(,2).(1)首先求得A、B點的坐標,然后利用待定系數法求拋物線的解析式,并求出拋物線與x軸另一交點C的坐標.(2)求出線段PE長度的表達式,設D點橫坐標為t,則可以將PE表示為關于t的二次函數,利用二次函數求極值的方法求出PE長度的最大值.(2)根據等腰三角形的性質和勾股定理,將直線l的存在性問題轉化為一元二次方程問題,通過一元二次方程的判別式可知直線l是否存在,并求出相應Q點的坐標.“△MON是等腰三角形”,其中包含三種情況:MN=ON,MN=OM,ON=OM,逐一討論求解.25、(1)見解析;(2).【解析】
(1)直接利用直角三角形的性質得出,再利用DE∥BC,得出∠2=∠3,進而得出答案;(2)利用已知得出在Rt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公立學校教師與學校勞動合同
- 與讀書有關的課件模板
- 肇慶市實驗中學高三生物三四五高效課堂教學設計:異常遺傳專題
- 江西省南昌市進賢二中2025年高三生物試題(下)期中試卷含解析
- 江西省南昌市10所省重點2025屆高三復習統一檢測試題生物試題含解析
- 新疆烏魯木齊市達標名校2024-2025學年初三下學期寒假開學考試語文試題含解析
- 新疆烏魯木齊市沙依巴克區2025屆三下數學期末檢測試題含解析
- 上海應用技術大學《電路理論實驗》2023-2024學年第二學期期末試卷
- 江西司法警官職業學院《中學歷史名師教學賞析》2023-2024學年第二學期期末試卷
- 技術開發與合作合同
- 2025年化學檢驗工職業技能競賽參考試題庫(共500題)
- 農村合作社農業產品供應合同
- 中國鍍錫銅絲行業市場發展前景及發展趨勢與投資戰略研究報告(2024-2030)
- GB/T 320-2025工業用合成鹽酸
- 安裝工程類別劃分標準及有關規定31183
- 【道法】做核心思想理念的傳承者(教案)-2024-2025學七年級道德與法治下冊(統編版)
- 2025-2030中國復合材料行業市場發展現狀及發展趨勢與投資風險研究報告
- 2025年濮陽職業技術學院單招職業適應性考試題庫及答案1套
- 血站新進員工培訓
- 牧原股份養殖場臭氣治理技術的創新應用
- 2025年社工招聘考試試題及答案
評論
0/150
提交評論