北京市西城區北京師范大附屬中學2023-2024學年中考數學模擬預測題含解析_第1頁
北京市西城區北京師范大附屬中學2023-2024學年中考數學模擬預測題含解析_第2頁
北京市西城區北京師范大附屬中學2023-2024學年中考數學模擬預測題含解析_第3頁
北京市西城區北京師范大附屬中學2023-2024學年中考數學模擬預測題含解析_第4頁
北京市西城區北京師范大附屬中學2023-2024學年中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市西城區北京師范大附屬中學2023-2024學年中考數學模擬預測題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.將2001×1999變形正確的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+12.下列關于x的方程一定有實數解的是()A. B.C. D.3.在學校演講比賽中,10名選手的成績折線統計圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數是5 C.中位數是90 D.平均分為87.54.如圖,已知直線AD是⊙O的切線,點A為切點,OD交⊙O于點B,點C在⊙O上,且∠ODA=36°,則∠ACB的度數為()A.54°B.36°C.30°D.27°5.如圖,折疊矩形紙片ABCD的一邊AD,使點D落在BC邊上的點F處,若AB=8,BC=10,則△CEF的周長為()A.12 B.16 C.18 D.246.已知二次函數y=x2+bx﹣9圖象上A、B兩點關于原點對稱,若經過A點的反比例函數的解析式是y=,則該二次函數的對稱軸是直線()A.x=1 B.x= C.x=﹣1 D.x=﹣7.一個不透明的袋子里裝著質地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.8.在一個口袋中有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機地摸出一個小球然后放回,再隨機地摸出一個小球.則兩次摸出的小球的標號的和等于6的概率為()A. B. C. D.9.如圖,A、B、C、D四個點均在⊙O上,∠AOD=50°,AO∥DC,則∠B的度數為()A.50°B.55°C.60°D.65°10.如圖所示的幾何體的俯視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式6xy2-9x2y-y3=_____________.12.計算tan260°﹣2sin30°﹣cos45°的結果為_____.13.如圖,與是以點為位似中心的位似圖形,相似比為,,,若點的坐標是,則點的坐標是__________.14.如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周長_____________cm.15.計算:()﹣1﹣(5﹣π)0=_____.16.π﹣3的絕對值是_____.三、解答題(共8題,共72分)17.(8分)如圖,在直角三角形ABC中,(1)過點A作AB的垂線與∠B的平分線相交于點D(要求:尺規作圖,保留作圖痕跡,不寫作法);(2)若∠A=30°,AB=2,則△ABD的面積為.18.(8分)截至2018年5月4日,中歐班列(鄭州)去回程開行共計1191班,我省與歐洲各國經貿往來日益頻繁,某歐洲客商準備在河南采購一批特色商品,經調查,用1600元采購A型商品的件數是用1000元采購B型商品的件數的2倍,一件A型商品的進價比一件B型商品的進價少20元,已知A型商品的售價為160元,B型商品的售價為240元,已知該客商購進甲乙兩種商品共200件,設其中甲種商品購進x件,該客商售完這200件商品的總利潤為y元(1)求A、B型商品的進價;(2)該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎上,實際進貨時,生產廠家對甲種商品的出廠價下調a元(50<a<70)出售,且限定商場最多購進120件,若客商保持同種商品的售價不變,請你根據以上信息及(2)中的條件,設計出使該客商獲得最大利潤的進貨方案.19.(8分)已知關于x的一元二次方程.求證:方程有兩個不相等的實數根;如果方程的兩實根為,,且,求m的值.20.(8分)為弘揚中華優秀傳統文化,某校開展“經典誦讀”比賽活動,誦讀材料有《論語》、《大學》、《中庸》(依次用字母A,B,C表示這三個材料),將A,B,C分別寫在3張完全相同的不透明卡片的正面上,背面朝上洗勻后放在桌面上,比賽時小禮先從中隨機抽取一張卡片,記下內容后放回,洗勻后,再由小智從中隨機抽取一張卡片,他倆按各自抽取的內容進行誦讀比賽.小禮誦讀《論語》的概率是;(直接寫出答案)請用列表或畫樹狀圖的方法求他倆誦讀兩個不同材料的概率.21.(8分)如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.(1)求證:與相切;(2)連接,求的值.22.(10分)某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數量不少于A型無人機的數量的2倍.設購進A型無人機x臺,總費用為y元.①求y與x的關系式;②購進A型、B型無人機各多少臺,才能使總費用最少?23.(12分)隨著移動計算技術和無線網絡的快速發展,移動學習方式越來越引起人們的關注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調查,并繪制出如下的統計圖①和圖②,根據相關信息,解答下列問題:本次接受隨機抽樣調查的學生人數為,圖①中m的值為;求本次調查獲取的樣本數據的眾數、中位數和平均數;根據樣本數據,估計該校1500名學生家庭中擁有3臺移動設備的學生人數.24.“綠水青山就是金山銀山”的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.求該型號自行車的進價和標價分別是多少元?若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

原式變形后,利用平方差公式計算即可得出答案.【詳解】解:原式=(2000+1)×(2000-1)=20002-1,故選A.【點睛】此題考查了平方差公式,熟練掌握平方差公式是解本題的關鍵.2、A【解析】

根據一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根逐一判斷即可得.【詳解】A.x2-mx-1=0中△=m2+4>0,一定有兩個不相等的實數根,符合題意;

B.ax=3中當a=0時,方程無解,不符合題意;

C.由可解得不等式組無解,不符合題意;

D.有增根x=1,此方程無解,不符合題意;

故選A.【點睛】本題主要考查方程的解,解題的關鍵是掌握一元二次方程根的判別式、二次根式有意義的條件、分式方程的增根.3、C【解析】試題分析:根據折線統計圖可得:最高分為95,眾數為90;中位數90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.4、D【解析】解:∵AD為圓O的切線,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD與∠ACB都對,∴∠ACB=∠AOD=27°.故選D.5、A【解析】

解:∵四邊形ABCD為矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直線AE折疊,頂點D恰好落在BC邊上的F處,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC-BF=10-6=4,∴△CEF的周長為:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故選A.6、D【解析】

設A點坐標為(a,),則可求得B點坐標,把兩點坐標代入拋物線的解析式可得到關于a和b的方程組,可求得b的值,則可求得二次函數的對稱軸.【詳解】解:∵A在反比例函數圖象上,∴可設A點坐標為(a,).∵A、B兩點關于原點對稱,∴B點坐標為(﹣a,﹣).又∵A、B兩點在二次函數圖象上,∴代入二次函數解析式可得:,解得:或,∴二次函數對稱軸為直線x=﹣.故選D.【點睛】本題主要考查二次函數的性質,待定系數法求二次函數解析式,根據條件先求得b的值是解題的關鍵,注意掌握關于原點對稱的兩點的坐標的關系.7、A【解析】

列表或畫樹狀圖得出所有等可能的結果,找出兩次都為紅球的情況數,即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數為20種,其中兩次都為紅球的情況有6種,∴,故選A.8、C【解析】列舉出所有情況,看兩次摸出的小球的標號的和等于6的情況數占總情況數的多少即可.解:共16種情況,和為6的情況數有3種,所以概率為.故選C.9、D【解析】試題分析:連接OC,根據平行可得:∠ODC=∠AOD=50°,則∠DOC=80°,則∠AOC=130°,根據同弧所對的圓周角等于圓心角度數的一半可得:∠B=130°÷2=65°.考點:圓的基本性質10、D【解析】試題分析:根據俯視圖的作法即可得出結論.從上往下看該幾何體的俯視圖是D.故選D.考點:簡單幾何體的三視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、-y(3x-y)2【解析】

先提公因式-y,然后再利用完全平方公式進行分解即可得.【詳解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案為:-y(3x-y)2.【點睛】本題考查了利用提公因式法與公式法分解因式,熟練掌握因式分解的方法及步驟是解題的關鍵.因式分解的一般步驟:一提(公因式),二套(套用公式),注意一定要分解到不能再分解為止.12、1【解析】

分別算三角函數,再化簡即可.【詳解】解:原式=-2×-×=1.【點睛】本題考查掌握簡單三角函數值,較基礎.13、(2,2)【解析】分析:首先解直角三角形得出A點坐標,再利用位似是特殊的相似,若兩個圖形與是以點為位似中心的位似圖形,相似比是k,上一點的坐標是則在中,它的對應點的坐標是或,進而求出即可.詳解:與是以點為位似中心的位似圖形,,,若點的坐標是,過點作交于點E.點的坐標為:與的相似比為,點的坐標為:即點的坐標為:故答案為:點睛:考查位似圖形的性質,熟練掌握位似圖形的性質是解題的關鍵.14、36.【解析】試題分析:∵△AFE和△ADE關于AE對稱,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長=8×2+10×2=36.考點:折疊的性質;矩形的性質;銳角三角函數;勾股定理.15、1【解析】

分別根據負整數指數冪,0指數冪的化簡計算出各數,即可解題【詳解】解:原式=2﹣1=1,故答案為1.【點睛】此題考查負整數指數冪,0指數冪的化簡,難度不大16、π﹣1.【解析】

根據絕對值的性質即可解答.【詳解】π﹣1的絕對值是π﹣1.故答案為π﹣1.【點睛】本題考查了絕對值的性質,熟練運用絕對值的性質是解決問題的關鍵.三、解答題(共8題,共72分)17、(1)見解析(2)【解析】

(1)分別作∠ABC的平分線和過點A作AB的垂線,它們的交點為D點;(2)利用角平分線定義得到∠ABD=30°,利用含30度的直角三角形三邊的關系得到AD=AB=,然后利用三角形面積公式求解.【詳解】解:(1)如圖,點D為所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD為角平分線,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面積=×2×=.故答案為.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了三角形面積公式.18、(1)80,100;(2)100件,22000元;(3)答案見解析.【解析】

(1)先設A型商品的進價為a元/件,求得B型商品的進價為(a+20)元/件,由題意得等式,解得a=80,再檢驗a是否符合條件,得到答案.(2)先設購機A型商品x件,則由題意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再設獲得的利潤為w元,由題意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,當x=100時代入w=﹣60x+28000,從而得答案.(3)設獲得的利潤為w元,由題意可得w(a﹣60)x+28000,分類討論:當50<a<60時,當a=60時,當60<a<70時,各個階段的利潤,得出最大值.【詳解】解:(1)設A型商品的進價為a元/件,則B型商品的進價為(a+20)元/件,,解得,a=80,經檢驗,a=80是原分式方程的解,∴a+20=100,答:A、B型商品的進價分別為80元/件、100元/件;(2)設購機A型商品x件,80x+100(200﹣x)≤18000,解得,x≥100,設獲得的利潤為w元,w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,∴當x=100時,w取得最大值,此時w=22000,答:該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進100件甲商品,若售完這些商品,則商場可獲得的最大利潤是22000元;(3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,∵50<a<70,∴當50<a<60時,a﹣60<0,y隨x的增大而減小,則甲100件,乙100件時利潤最大;當a=60時,w=28000,此時甲乙只要是滿足條件的整數即可;當60<a<70時,a﹣60>0,y隨x的增大而增大,則甲120件,乙80件時利潤最大.【點睛】本題考察一次函數的應用及一次不等式的應用,屬于中檔題,難度不大.19、(1)證明見解析(1)1或1【解析】試題分析:(1)要證明方程有兩個不相等的實數根,只要證明原來的一元二次方程的△的值大于0即可;(1)根據根與系數的關系可以得到關于m的方程,從而可以求得m的值.試題解析:(1)證明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有兩個不相等的實數根;(1)∵,方程的兩實根為,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.20、(1);(2).【解析】

(1)利用概率公式直接計算即可;(2)列舉出所有情況,看小明和小亮誦讀兩個不同材料的情況數占總情況數的多少即可.【詳解】(1)∵誦讀材料有《論語》,《三字經》,《弟子規》三種,∴小明誦讀《論語》的概率=,(2)列表得:小明小亮ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9種等可能性結果,其中小明和小亮誦讀兩個不同材料結果有6種.所以小明和小亮誦讀兩個不同材料的概率=.【點睛】本題考查了用列表法或畫樹形圖發球隨機事件的概率,用到的知識點為:概率=所求情況數與總情況數之比;得到所求的情況數是解決本題的易錯點.21、(1)見解析;(2)【解析】

(1)連接,,易證為等邊三角形,可得,由等腰三角形的性質及角的和差關系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得與相切;(2)作于點.設,則,.根據兩組對邊互相平行可證明四邊形為平行四邊形,由可證四邊形為菱形,由(1)得,從而可求出、的值,從而可知的長度,利用銳角三角函數的定義即可求出的值.【詳解】(1)連接,.∵是的直徑,弦于點,∴,.∵,∴.∴為等邊三角形.∴,∠DAE=∠EAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°,∴.∴與相切.(2)連接EF,作于點.設,則,.∵與相切,∴.又∵,∴.又∵,∴四邊形為平行四邊形.∵,∴四邊形為菱形.∴,.由(1)得,∴,.∴.∵在中,,∴.【點睛】本題考查圓的綜合問題,涉及切線的判定與性質,菱形的判定與性質,等邊三角形的性質及銳角三角函數,考查學生綜合運用知識的能力,熟練掌握相關性質是解題關鍵.22、(1)一臺A型無人機售價800元,一臺B型無人機的售價1000元;(2)①y=﹣200x+50000;②購進A型、B型無人機各16臺、34臺時,才能使總費用最少.【解析】

(1)根據3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元,可以列出相應的方程組,從而可以解答本題;(2)①根據題意可以得到y與x的函數關系式;②根據①中的函數關系式和B型無人機的數量不少于A型無人機的數量的2倍,可以求得購進A型、B型無人機各多少臺,才能使總費用最少.【詳解】解:(1)設一臺型無人機售價元,一臺型無人機的售價元,,解得,,答:一臺型無人機售價元,一臺型無人機的售價元;(2)①由題意可得,即y與x的函數關系式為;②∵B型無人機的數量不少于A型無人機的數量的2倍,,解得,,,∴當時,y取得最小值,此時,答:購進型、型無人機各臺、臺時,才能使總費用最少.【點睛】本題考查二元一次方程組的應用、一次函數的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用一次函數的性質和方程的知識解答.23、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.【解析】

(Ⅰ)利用家庭中擁有1臺移動設備的人數除以其所占百分比即可得調查的學生人數,將擁有4臺移動設備的人數除以總人數即可求得m的值;(Ⅱ)根據眾數、中位數、加權平均數的定義計算即可;(Ⅲ)將樣本中擁有3臺移動設備的學生人數所占比例乘以總

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論