2024屆福建廈門第一中學中考數學適應性模擬試題含解析_第1頁
2024屆福建廈門第一中學中考數學適應性模擬試題含解析_第2頁
2024屆福建廈門第一中學中考數學適應性模擬試題含解析_第3頁
2024屆福建廈門第一中學中考數學適應性模擬試題含解析_第4頁
2024屆福建廈門第一中學中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆福建廈門第一中學中考數學適應性模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,D、E分別是邊AB、AC的中點,若BC=6,則DE的長為()A.2 B.3 C.4 D.62.若a與5互為倒數,則a=()A. B.5 C.-5 D.3.向某一容器中注水,注滿為止,表示注水量與水深的函數關系的圖象大致如圖所示,則該容器可能是()A. B.C. D.4.如圖,O為直線AB上一點,OE平分∠BOC,OD⊥OE于點O,若∠BOC=80°,則∠AOD的度數是()A.70° B.50° C.40° D.35°5.下列方程中有實數解的是()A.x4+16=0 B.x2﹣x+1=0C. D.6.根據《九章算術》的記載中國人最早使用負數,下列負數中最大的是()A.-1 B.-12 C.-7.在平面直角坐標系中,點(2,3)所在的象限是(

)A.第一象限

B.第二象限

C.第三象限

D.第四象限8.下列判斷正確的是()A.任意擲一枚質地均勻的硬幣10次,一定有5次正面向上B.天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數,|a|≥0”是不可能事件9.6的絕對值是()A.6 B.﹣6 C. D.10.如圖,平行四邊形ABCD的頂點A、B、D在⊙O上,頂點C在⊙O直徑BE上,連結AE,若∠E=36°,則∠ADC的度數是()A.44° B.53° C.72° D.54°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,正方形ABCD中,AB=2,將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,連接BF,則圖中陰影部分的面積是_____.12.如圖,在ABCD中,AB=8,P、Q為對角線AC的三等分點,延長DP交AB于點M,延長MQ交CD于點N,則CN=__________.13.Rt△ABC中,AD為斜邊BC上的高,若,則.14.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點B,C,E在同一條直線上,點D在CG上,BC=1,CE=3,H是AF的中點,則CH的長為________.15.A,B兩市相距200千米,甲車從A市到B市,乙車從B市到A市,兩車同時出發,已知甲車速度比乙車速度快15千米/小時,且甲車比乙車早半小時到達目的地.若設乙車的速度是x千米/小時,則根據題意,可列方程____________.16.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數為()A.144° B.84° C.74° D.54°三、解答題(共8題,共72分)17.(8分)初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結果精確到0.01米)18.(8分)(10分)如圖,AB是⊙O的直徑,OD⊥弦BC于點F,交⊙O于點E,連結CE、AE、CD,若∠AEC=∠ODC.(1)求證:直線CD為⊙O的切線;(2)若AB=5,BC=4,求線段CD的長.19.(8分)如圖所示,拋物線y=x2+bx+c經過A、B兩點,A、B兩點的坐標分別為(﹣1,0)、(0,﹣3).求拋物線的函數解析式;點E為拋物線的頂點,點C為拋物線與x軸的另一交點,點D為y軸上一點,且DC=DE,求出點D的坐標;在第二問的條件下,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,請你直接寫出所有滿足條件的點P的坐標.20.(8分)如圖,△ABC中,點D在邊AB上,滿足∠ACD=∠ABC,若AC=,AD=1,求DB的長.21.(8分)(1)問題發現:如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數量關系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.22.(10分)“不出城郭而獲山水之怡,身居鬧市而有林泉之致”,合肥市某區不斷推進“園林城市”建設,今春種植了四類花苗,園林部門從種植的這批花苗中隨機抽取了2000株,將四類花苗的種植株數繪制成扇形統計圖,將四類花苗的成活株數繪制成條形統圖.經統計這批2000株的花苗總成活率為90%,其中玉蘭和月季的成活率較高,根據圖表中的信息解答下列問題:扇形統計圖中玉蘭所對的圓心角為,并補全條形統計圖;該區今年共種植月季8000株,成活了約株;園林部門決定明年從這四類花苗中選兩類種植,請用列表法或畫樹狀圖求恰好選到成活率較高的兩類花苗的概率.23.(12分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.24.如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,連接AD,過D作AC的垂線,交AC邊于點E,交AB邊的延長線于點F.(1)求證:EF是⊙O的切線;(2)若∠F=30°,BF=3,求弧AD的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據三角形的中位線等于第三邊的一半進行計算即可.【詳解】∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=6,∴DE=12故選B.【點睛】本題考查了三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應用.2、A【解析】分析:當兩數的積為1時,則這兩個數互為倒數,根據定義即可得出答案.詳解:根據題意可得:5a=1,解得:a=,故選A.點睛:本題主要考查的是倒數的定義,屬于基礎題型.理解倒數的定義是解題的關鍵.3、D【解析】

根據函數的圖象和所給出的圖形分別對每一項進行判斷即可.【詳解】由函數圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項正確.故選:D.【點睛】本題主要考查函數模型及其應用.4、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數.詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點睛:本題考查了角平分線的定義:從一個角的頂點出發,把這個角分成相等的兩個角的射線叫做這個角的平分線.性質:若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.5、C【解析】

A、B是一元二次方程可以根據其判別式判斷其根的情況;C是無理方程,容易看出沒有實數根;D是分式方程,能使得分子為零,分母不為零的就是方程的根.【詳解】A.中△=02﹣4×1×16=﹣64<0,方程無實數根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程無實數根;C.x=﹣1是方程的根;D.當x=1時,分母x2-1=0,無實數根.故選:C.【點睛】本題考查了方程解得定義,能使方程左右兩邊相等的未知數的值叫做方程的解.解答本題的關鍵是針對不同的方程進行分類討論.6、B【解析】

根據兩個負數,絕對值大的反而小比較.【詳解】解:∵?12>?1>?2∴負數中最大的是?12故選:B.【點睛】本題考查了實數大小的比較,解題的關鍵是知道正數大于0,0大于負數,兩個負數,絕對值大的反而小.7、A【解析】

根據點所在象限的點的橫縱坐標的符號特點,就可得出已知點所在的象限.【詳解】解:點(2,3)所在的象限是第一象限.故答案為:A【點睛】考核知識點:點的坐標與象限的關系.8、C【解析】

直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數,|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關定義是解題關鍵.9、A【解析】試題分析:1是正數,絕對值是它本身1.故選A.考點:絕對值.10、D【解析】

根據直徑所對的圓周角為直角可得∠BAE=90°,再根據直角三角形的性質和平行四邊形的性質可得解.【詳解】根據直徑所對的圓周角為直角可得∠BAE=90°,根據∠E=36°可得∠B=54°,根據平行四邊形的性質可得∠ADC=∠B=54°.故選D【點睛】本題考查了平行四邊形的性質、圓的基本性質.二、填空題(本大題共6個小題,每小題3分,共18分)11、6﹣π【解析】過F作FM⊥BE于M,則∠FME=∠FMB=90°,

∵四邊形ABCD是正方形,AB=2,

∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,

由勾股定理得:BD=2,

∵將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,

∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,

∴BM=FM=2,ME=2,

∴陰影部分的面積=×2×2+×4×2+-=6-π.

故答案為:6-π.點睛:本題考查了旋轉的性質,解直角三角形,正方形的性質,扇形的面積計算等知識點,能求出各個部分的面積是解此題的關鍵.12、1【解析】

根據平行四邊形定義得:DC∥AB,由兩角對應相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的長.【詳解】∵四邊形ABCD是平行四邊形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q為對角線AC的三等分點,∴,,設CN=x,AM=1x,∴,解得,x=1,∴CN=1,故答案為1.【點睛】本題考查了平行四邊形的性質和相似三角形的判定和性質,熟練掌握兩角對應相等,兩三角形相似的判定方法是關鍵.13、【解析】

利用直角三角形的性質,判定三角形相似,進一步利用相似三角形的面積比等于相似比的性質解決問題.【詳解】如圖,∵∠CAB=90°,且AD⊥BC,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,則S△ABD:S△ABC=1:4,∴AB:BC=1:1.14、【解析】

連接AC、CF,GE,根據菱形性質求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對角線,∴,∴,∴∵==,∴在,又∵H是AF的中點∴.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,菱形的性質,勾股定理,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.15、200x【解析】

直接利用甲車比乙車早半小時到達目的地得出等式即可.【詳解】解:設乙車的速度是x千米/小時,則根據題意,可列方程:200x故答案為:200x【點睛】此題主要考查了由實際問題抽象出分式方程,正確表示出兩車所用時間是解題關鍵.16、B【解析】正五邊形的內角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.三、解答題(共8題,共72分)17、AD=38.28米.【解析】

過點B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長即可求得AD的長.【詳解】過點B作BE⊥DA,BF⊥DC,垂足分別為E,F,由題意知,AD⊥CD∴四邊形BFDE為矩形∴BF=ED在Rt△ABE中,AE=AB?cos∠EAB在Rt△BCF中,BF=BC?cos∠FBC∴AD=AE+BF=20?cos60°+40?cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.【點睛】解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.18、(1)證明見試題解析;(2).【解析】試題分析:(1)利用圓周角定理結合等腰三角形的性質得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圓周角定理得出∠ACB=90°,利用相似三角形的判定與性質得出DC的長.試題解析:(1)連接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直線CD為⊙O的切線;(2)連接AC,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B,∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴,即,解得;DC=.考點:切線的判定.19、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P點坐標(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解析】

(1)將A,B兩點坐標代入解析式,求出b,c值,即可得到拋物線解析式;(2)先根據解析式求出C點坐標,及頂點E的坐標,設點D的坐標為(0,m),作EF⊥y軸于點F,利用勾股定理表示出DC,DE的長.再建立相等關系式求出m值,進而求出D點坐標;(3)先根據邊角邊證明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后當以C、D、P為頂點的三角形與△DOC相似時,根據對應邊不同進行分類討論:①當OC與CD是對應邊時,有比例式,能求出DP的值,又因為DE=DC,所以過點P作PG⊥y軸于點G,利用平行線分線段成比例定理即可求出DG,PG的長度,根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;②當OC與DP是對應邊時,有比例式,易求出DP,仍過點P作PG⊥y軸于點G,利用比例式求出DG,PG的長度,然后根據點P在點D的左邊和右邊,得到符合條件的兩個P點坐標;這樣,直線DE上根據對應邊不同,點P所在位置不同,就得到了符合條件的4個P點坐標.【詳解】解:(1)∵拋物線y=x2+bx+c經過A(﹣1,0)、B(0,﹣3),∴,解得,故拋物線的函數解析式為y=x2﹣2x﹣3;(2)令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,則點C的坐標為(3,0),∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴點E坐標為(1,﹣4),設點D的坐標為(0,m),作EF⊥y軸于點F(如下圖),∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,∵DC=DE,∴m2+9=m2+8m+16+1,解得m=﹣1,∴點D的坐標為(0,﹣1);(3)∵點C(3,0),D(0,﹣1),E(1,﹣4),∴CO=DF=3,DO=EF=1,根據勾股定理,CD===,在△COD和△DFE中,∵,∴△COD≌△DFE(SAS),∴∠EDF=∠DCO,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD⊥DE,①當OC與CD是對應邊時,∵△DOC∽△PDC,∴,即=,解得DP=,過點P作PG⊥y軸于點G,則,即,解得DG=1,PG=,當點P在點D的左邊時,OG=DG﹣DO=1﹣1=0,所以點P(﹣,0),當點P在點D的右邊時,OG=DO+DG=1+1=2,所以,點P(,﹣2);②當OC與DP是對應邊時,∵△DOC∽△CDP,∴,即=,解得DP=3,過點P作PG⊥y軸于點G,則,即,解得DG=9,PG=3,當點P在點D的左邊時,OG=DG﹣OD=9﹣1=8,所以,點P的坐標是(﹣3,8),當點P在點D的右邊時,OG=OD+DG=1+9=10,所以,點P的坐標是(3,﹣10),綜上所述,在直線DE上存在點P,使得以C、D、P為頂點的三角形與△DOC相似,滿足條件的點P共有4個,其坐標分別為(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).考點:1.相似三角形的判定與性質;2.二次函數動點問題;3.一次函數與二次函數綜合題.20、BD=2.【解析】

試題分析:根據∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性質得出AB的長,從而求出DB的長.試題解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.點睛:本題主要考查了相似三角形的判定以及相似三角形的性質,利用相似三角形的性質求出AB的長是解題關鍵.21、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】

(1)根據△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據相似三角形的性質得到,利用等腰三角形的性質得到∠BAC=∠MAN,根據相似三角形的性質即可得到結論;

(3)如圖3,連接AB,AN,根據正方形的性質得到∠ABC=∠BAC=45°,∠MAN=45°,根據相似三角形的性質得出,得到BM=2,CM=8,再根據勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.【點睛】本題是四邊形綜合題目,考查了正方形的性質、等邊三角形的性質、等腰三角形的性質、全等三角形的性質定理和判定定理、相似三角形的性質定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關鍵.22、(1)72°,見解析;(2)7280;(3)16【解析】

(1)根據題意列式計算,補全條形統計圖即可;(2)根據題意列式計算即可;(3)畫樹狀圖得出所有等可能的情況數,找出選到成活率較高的兩類樹苗的情況數,即可求出所求的概率.【詳解】(1)扇形統計圖中玉蘭所對的圓心角為360°×(1-40%-15

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論