山東濟南市歷下區(qū)2024屆中考數學最后沖刺濃縮精華卷含解析_第1頁
山東濟南市歷下區(qū)2024屆中考數學最后沖刺濃縮精華卷含解析_第2頁
山東濟南市歷下區(qū)2024屆中考數學最后沖刺濃縮精華卷含解析_第3頁
山東濟南市歷下區(qū)2024屆中考數學最后沖刺濃縮精華卷含解析_第4頁
山東濟南市歷下區(qū)2024屆中考數學最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東濟南市歷下區(qū)2024屆中考數學最后沖刺濃縮精華卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.若一次函數的圖像過第一、三、四象限,則函數()A.有最大值 B.有最大值 C.有最小值 D.有最小值2.如圖,A,C,E,G四點在同一直線上,分別以線段AC,CE,EG為邊在AG同側作等邊三角形△ABC,△CDE,△EFG,連接AF,分別交BC,DC,DE于點H,I,J,若AC=1,CE=2,EG=3,則△DIJ的面積是()A. B. C. D.3.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④4.對于命題“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題的是()A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°C.∠1=30°,∠1=60° D.∠1=∠1=45°5.第24屆冬奧會將于2022年在北京和張家口舉行,冬奧會的項目有滑雪(如跳臺滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現將這5張卡片洗勻后正面向下放在桌子上,從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是()A. B. C. D.6.某中學為了創(chuàng)建“最美校園圖書屋”,新購買了一批圖書,其中科普類圖書平均每本書的價格是文學類圖書平均每本書價格的1.2倍.已知學校用12000元購買文學類圖書的本數比用這些錢購買科普類圖書的本數多100本,那么學校購買文學類圖書平均每本書的價格是多少元?設學校購買文學類圖書平均每本書的價格是x元,則下面所列方程中正確的是()A. B.C. D.7.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點分別落在直線m,n上,若∠1=20°,則∠2的度數為()A.20° B.30° C.45° D.50°8.某青年排球隊12名隊員年齡情況如下:年齡1819202122人數14322則這12名隊員年齡的眾數、中位數分別是()A.20,19 B.19,19 C.19,20.5 D.19,209.一個幾何體的三視圖如圖所示,那么這個幾何體是()A. B. C. D.10.如圖,已知AB和CD是⊙O的兩條等弦.OM⊥AB,ON⊥CD,垂足分別為點M、N,BA、DC的延長線交于點P,聯(lián)結OP.下列四個說法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正確的個數是()A.1 B.2 C.3 D.4二、填空題(本大題共6個小題,每小題3分,共18分)11.計算(a3)2÷(a2)3的結果等于________12.一組數據:1,2,a,4,5的平均數為3,則a=_____.13.當時,直線與拋物線有交點,則a的取值范圍是_______.14.在平面直角坐標系中,已知線段AB的兩個端點的坐標分別是A(4,-1)、B(1,1),將線段AB平移后得到線段A′B′,若點A′的坐標為(-2,2),則點B′的坐標為________.15.分解因式:.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點D、E分別在邊AC、BC上,且CD:CE=3︰1.將△CDE繞點D順時針旋轉,當點C落在線段DE上的點F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.三、解答題(共8題,共72分)17.(8分)如圖,某市郊外景區(qū)內一條筆直的公路a經過三個景點A、B、C,景區(qū)管委會又開發(fā)了風景優(yōu)美的景點D,經測量,景點D位于景點A的北偏東30′方向8km處,位于景點B的正北方向,還位于景點C的北偏西75°方向上,已知AB=5km.景區(qū)管委會準備由景點D向公路a修建一條距離最短的公路,不考試其他因素,求出這條公路的長.(結果精確到0.1km).求景點C與景點D之間的距離.(結果精確到1km).18.(8分)為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規(guī)定每盒售價不得少于45元.根據以往銷售經驗發(fā)現;當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?為穩(wěn)定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?19.(8分)某中學開展“漢字聽寫大賽”活動,為了解學生的參與情況,在該校隨機抽取了四個班級學生進行調查,將收集的數據整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據圖中的信息,解答下列問題:(1)這四個班參與大賽的學生共__________人;(2)請你補全兩幅統(tǒng)計圖;(3)求圖1中甲班所對應的扇形圓心角的度數;(4)若四個班級的學生總數是160人,全校共2000人,請你估計全校的學生中參與這次活動的大約有多少人.20.(8分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一塊等腰直角三角板的直角頂點放在C處,CP=CQ=2,將三角板CPQ繞點C旋轉(保持點P在△ABC內部),連接AP、BP、BQ.如圖1求證:AP=BQ;如圖2當三角板CPQ繞點C旋轉到點A、P、Q在同一直線時,求AP的長;設射線AP與射線BQ相交于點E,連接EC,寫出旋轉過程中EP、EQ、EC之間的數量關系.21.(8分)某手機經銷商計劃同時購進一批甲、乙兩種型號的手機,若購進2部甲型號手機和1部乙型號手機,共需要資金2800元;若購進3部甲型號手機和2部乙型號手機,共需要資金4600元求甲、乙型號手機每部進價為多少元?該店計劃購進甲、乙兩種型號的手機銷售,預計用不多于1.8萬元且不少于1.74萬元的資金購進這兩部手機共20臺,請問有幾種進貨方案?請寫出進貨方案售出一部甲種型號手機,利潤率為40%,乙型號手機的售價為1280元.為了促銷,公司決定每售出一臺乙型號手機,返還顧客現金m元,而甲型號手機售價不變,要使(2)中所有方案獲利相同,求m的值22.(10分)如圖,△ABC中,D是BC上的一點,若AB=10,BD=6,AD=8,AC=17,求△ABC的面積.23.(12分)已知,拋物線y=x2﹣x+與x軸分別交于A、B兩點(A點在B點的左側),交y軸于點F.(1)A點坐標為;B點坐標為;F點坐標為;(2)如圖1,C為第一象限拋物線上一點,連接AC,BF交于點M,若BM=FM,在直線AC下方的拋物線上是否存在點P,使S△ACP=4,若存在,請求出點P的坐標,若不存在,請說明理由;(3)如圖2,D、E是對稱軸右側第一象限拋物線上的兩點,直線AD、AE分別交y軸于M、N兩點,若OM?ON=,求證:直線DE必經過一定點.24.先化簡,再求值:,再從的范圍內選取一個你最喜歡的值代入,求值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

解:∵一次函數y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數有最大值,∴最大值為,故選B.2、A【解析】

根據等邊三角形的性質得到FG=EG=3,∠AGF=∠FEG=60°,根據三角形的內角和得到∠AFG=90°,根據相似三角形的性質得到==,==,根據三角形的面積公式即可得到結論.【詳解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等邊三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等邊三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴==,∴EJ=,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴==,∴CI=1,DI=1,DJ=,∴IJ=,∴=?DI?IJ=××.故選:A.【點睛】本題考查了等邊三角形的性質,相似三角形的判定和性質,三角形的面積的計算,熟練掌握相似三角形的性質和判定是解題的關鍵.3、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當四邊形是菱形時,②和④成立.故選D.4、D【解析】

能說明是假命題的反例就是能滿足已知條件,但不滿足結論的例子.【詳解】“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題為∠1=∠1=45°.故選:D.【點睛】考查了命題與定理的知識,理解能說明它是假命題的反例的含義是解決本題的關鍵.5、B【解析】

先找出滑雪項目圖案的張數,結合5張形狀、大小、質地均相同的卡片,再根據概率公式即可求解.【詳解】∵有5張形狀、大小、質地均相同的卡片,滑雪項目圖案的有高山滑雪和單板滑雪2張,∴從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是.故選B.【點睛】本題考查了簡單事件的概率.用到的知識點為:概率=所求情況數與總情況數之比.6、B【解析】

首先設文學類圖書平均每本的價格為x元,則科普類圖書平均每本的價格為1.2x元,根據題意可得等量關系:學校用12000元購買文學類圖書的本數比用這些錢購買科普類圖書的本數多100本,根據等量關系列出方程,【詳解】設學校購買文學類圖書平均每本書的價格是x元,可得:故選B.【點睛】此題主要考查了分式方程的應用,關鍵是正確理解題意,找出題目中的等量關系,列出方程.7、D【解析】

根據兩直線平行,內錯角相等計算即可.【詳解】因為m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【點睛】本題主要考查平行線的性質,清楚兩直線平行,內錯角相等是解答本題的關鍵.8、D【解析】

先計算出這個隊共有1+4+3+2+2=12人,然后根據眾數與中位數的定義求解.【詳解】這個隊共有1+4+3+2+2=12人,這個隊隊員年齡的眾數為19,中位數為=1.故選D.【點睛】本題考查了眾數:在一組數據中出現次數最多的數叫這組數據的眾數.也考查了中位數的定義.9、C【解析】由主視圖和左視圖可得此幾何體為柱體,根據俯視圖為三角形可得此幾何體為三棱柱.故選C.10、D【解析】如圖連接OB、OD;∵AB=CD,∴=,故①正確∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正確,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正確,∵AM=CN,∴PA=PC,故③正確,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

根據冪的乘方,底數不變,指數相乘;同底數冪的除法,底數不變,指數相減進行計算即可.【詳解】解:原式=【點睛】本題主要考查冪的乘方和同底數冪的除法,熟記法則是解決本題的關鍵,在計算中不要與其他法則相混淆.冪的乘方,底數不變,指數相乘;同底數冪的除法,底數不變,指數相減.12、1【解析】依題意有:(1+2+a+4+5)÷5=1,解得a=1.故答案為1.13、【解析】

直線與拋物線有交點,則可化為一元二次方程組利用根的判別式進行計算.【詳解】解:法一:與拋物線有交點則有,整理得解得,對稱軸法二:由題意可知,∵拋物線的頂點為,而∴拋物線y的取值為,則直線y與x軸平行,∴要使直線與拋物線有交點,∴拋物線y的取值為,即為a的取值范圍,∴故答案為:【點睛】考查二次函數圖象的性質及交點的問題,此類問題,通常可化為一元二次方程,利用根的判別式或根與系數的關系進行計算.14、(-5,4)【解析】試題解析:由于圖形平移過程中,對應點的平移規(guī)律相同,

由點A到點A'可知,點的橫坐標減6,縱坐標加3,

故點B'的坐標為即

故答案為:15、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應用平方差公式分解即可:.16、2【解析】分析:設CD=3x,則CE=1x,BE=12﹣1x,依據∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋轉可得DF=CD=3x,再根據Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,進而得出CD=2.詳解:如圖所示,設CD=3x,則CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋轉可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案為2.點睛:本題考查了相似三角形的判定與性質,勾股定理以及旋轉的性質,解題時注意:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.三、解答題(共8題,共72分)17、(1)景點D向公路a修建的這條公路的長約是3.1km;(2)景點C與景點D之間的距離約為4km.【解析】

解:(1)如圖,過點D作DE⊥AC于點E,過點A作AF⊥DB,交DB的延長線于點F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD?sin∠DBE=×(4﹣3)=≈3.1(km),∴景點D向公路a修建的這條公路的長約是3.1km;(2)由題意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景點C與景點D之間的距離約為4km.18、(1)y=﹣20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)超市每天至少銷售粽子440盒.【解析】試題分析:(1)根據“當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;(2)根據利潤=1盒粽子所獲得的利潤×銷售量列式整理,再根據二次函數的最值問題解答;(3)先由(2)中所求得的P與x的函數關系式,根據這種粽子的每盒售價不得高于58元,且每天銷售粽子的利潤不低于6000元,求出x的取值范圍,再根據(1)中所求得的銷售量y(盒)與每盒售價x(元)之間的函數關系式即可求解.試題解析:(1)由題意得,==;(2)P===,∵x≥45,a=﹣20<0,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)由題意,得=6000,解得,,∵拋物線P=的開口向下,∴當50≤x≤70時,每天銷售粽子的利潤不低于6000元的利潤,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y隨x的增大而減小,∴當x=58時,y最小值=﹣20×58+1600=440,即超市每天至少銷售粽子440盒.考點:二次函數的應用.19、(1)100;(2)見解析;(3)108°;(4)1250.【解析】試題分析:(1)根據乙班參賽30人,所占比為20%,即可求出這四個班總人數;(2)根據丁班參賽35人,總人數是100,即可求出丁班所占的百分比,再用整體1減去其它所占的百分比,即可得出丙所占的百分比,再乘以參賽得總人數,即可得出丙班參賽得人數,從而補全統(tǒng)計圖;(3)根據甲班級所占的百分比,再乘以360°,即可得出答案;(4)根據樣本估計總體,可得答案.試題解析:(1)這四個班參與大賽的學生數是:30÷30%=100(人);故答案為100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,則丙班得人數是:100×15%=15(人);如圖:(3)甲班級所對應的扇形圓心角的度數是:30%×360°=108°;(4)根據題意得:2000×=1250(人).答:全校的學生中參與這次活動的大約有1250人.考點:條形統(tǒng)計圖;扇形統(tǒng)計圖;樣本估計總體.20、(1)證明見解析(2)(3)EP+EQ=EC【解析】

(1)由題意可得:∠ACP=∠BCQ,即可證△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ于H,由題意可求PQ=2,可得CH=,根據勾股定理可求AH=,即可求AP的長;作CM⊥BQ于M,CN⊥EP于N,設BC交AE于O,由題意可證△CNP≌△CMQ,可得CN=CM,QM=PN,即可證Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,則可求得EP、EQ、EC之間的數量關系.【詳解】解:(1)如圖1中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如圖2中,作CH⊥PQ于H∵A、P、Q共線,PC=2,∴PQ=2,∵PC=CQ,CH⊥PQ∴CH=PH=在Rt△ACH中,AH==∴PA=AH﹣PH=-解:結論:EP+EQ=EC理由:如圖3中,作CM⊥BQ于M,CN⊥EP于N,設BC交AE于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,EC=EN,∴EP+EQ=EC【點睛】本題考查幾何變換綜合題,解答關鍵是等腰直角三角形的性質,全等三角形的性質和判定,添加恰當輔助線構造全等三角形.21、(1)甲種型號手機每部進價為1000元,乙種型號手機每部進價為800元;(2)共有四種方案;(3)當m=80時,w始終等于8000,取值與a無關【解析】

(1)設甲種型號手機每部進價為x元,乙種型號手機每部進價為y元根據題意列方程組求出x、y的值即可;(2)設購進甲種型號手機a部,這購進乙種型號手機(20-a)部,根據題意列不等式組求出a的取值范圍,根據a為整數求出a的值即可明確方案(3)利用利潤=單個利潤數量,用a表示出利潤W,當利潤與a無關時,(2)中的方案利潤相同,求出m值即可;【詳解】(1)設甲種型號手機每部進價為x元,乙種型號手機每部進價為y元,,解得,(2)設購進甲種型號手機a部,這購進乙種型號手機(20-a)部,17400≤1000a+800(20-a)≤18000,解得7≤a≤10,∵a為自然數,∴有a為7、8、9、10共四種方案,(3)甲種型號手機每部利潤為1000×40%=400,w=400a+(1280-800-m)(20-a)=(m-80)a+9600-20m,當m=80時,w始終等于8000,取值與a無關.【點睛】本題考查了列二元一次方程組解實際問題的運用,根據題意找出等量關系列出方程是解題關鍵.22、3【解析】試題分析:根據

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論