內蒙古北京師范大烏海附屬校2023-2024學年中考數學適應性模擬試題含解析_第1頁
內蒙古北京師范大烏海附屬校2023-2024學年中考數學適應性模擬試題含解析_第2頁
內蒙古北京師范大烏海附屬校2023-2024學年中考數學適應性模擬試題含解析_第3頁
內蒙古北京師范大烏海附屬校2023-2024學年中考數學適應性模擬試題含解析_第4頁
內蒙古北京師范大烏海附屬校2023-2024學年中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古北京師范大烏海附屬校2023-2024學年中考數學適應性模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.有理數a、b在數軸上的位置如圖所示,則下列結論中正確的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>02.對于兩組數據A,B,如果sA2>sB2,且,則()A.這兩組數據的波動相同 B.數據B的波動小一些C.它們的平均水平不相同 D.數據A的波動小一些3.某車間需加工一批零件,車間20名工人每天加工零件數如表所示:每天加工零件數45678人數36542每天加工零件數的中位數和眾數為()A.6,5 B.6,6 C.5,5 D.5,64.已知y關于x的函數圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<25.如圖,在中,E為邊CD上一點,將沿AE折疊至處,與CE交于點F,若,,則的大小為()A.20° B.30° C.36° D.40°6.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.7.下列各式中的變形,錯誤的是(()A.2-3x=-23x B.-b8.計算的值()A.1 B. C.3 D.9.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm210.中國傳統扇文化有著深厚的底蘊,下列扇面圖形是中心對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.在平面直角坐標系中,點A1,A2,A3和B1,B2,B3分別在直線y=和x軸上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.則A3的坐標為_______.

.12.在實數﹣2、0、﹣1、2、中,最小的是_______.13.在平面直角坐標系xOy中,點A(4,3)為⊙O上一點,B為⊙O內一點,請寫出一個符合條件要求的點B的坐標______.14.如圖,△ABC與△DEF位似,點O為位似中心,若AC=3DF,則OE:EB=_____.15.已知二次函數的圖象開口向上,且經過原點,試寫出一個符合上述條件的二次函數的解析式:_____.(只需寫出一個)16.關于x的一元二次方程ax2﹣x﹣=0有實數根,則a的取值范圍為________.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,一次函數的圖象分別交x軸、y軸于A、B兩點,與反比例函數的圖象交于C、D兩點.已知點C的坐標是(6,-1),D(n,3).求m的值和點D的坐標.求的值.根據圖象直接寫出:當x為何值時,一次函數的值大于反比例函數的值?18.(8分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進10顆黑色棋子,則取得黑色棋子的概率變為.求x和y的值.19.(8分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C′.(1)求拋物線C的函數表達式;(2)若拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,求m的取值范圍.(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C′上的對應點P′,設M是C上的動點,N是C′上的動點,試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請說明理由.20.(8分)如圖,現有一塊鋼板余料,它是矩形缺了一角,.王師傅準備從這塊余料中裁出一個矩形(為線段上一動點).設,矩形的面積為.(1)求與之間的函數關系式,并注明的取值范圍;(2)為何值時,取最大值?最大值是多少?21.(8分)如圖所示,點C在線段AB上,AC=8cm,CB=6cm,點M、N分別是AC、BC的中點.求線段MN的長.若C為線段AB上任意一點,滿足AC+CB=a(cm),其他條件不變,你能猜想出MN的長度嗎?并說明理由.若C在線段AB的延長線上,且滿足AC-CB=b(cm),M、N分別為AC、BC的中點,你能猜想出MN的長度嗎?請畫出圖形,寫出你的結論,并說明理由.22.(10分)在“弘揚傳統文化,打造書香校園”活動中,學校計劃開展四項活動:“A-國學誦讀”、“B-演講”、“C-課本劇”、“D-書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意思,隨機調查了部分學生,結果統計如下:(1)根據題中信息補全條形統計圖.(2)所抽取的學生參加其中一項活動的眾數是.(3)學校現有800名學生,請根據圖中信息,估算全校學生希望參加活動A有多少人?23.(12分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).24.如圖,在一條河的北岸有兩個目標M、N,現在位于它的對岸設定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.(1)求點M到AB的距離;(結果保留根號)(2)在B點又測得∠NBA=53°,求MN的長.(結果精確到1米)(參考數據:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

利用數軸先判斷出a、b的正負情況以及它們絕對值的大小,然后再進行比較即可.【詳解】解:由a、b在數軸上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故選:C.2、B【解析】試題解析:方差越小,波動越小.數據B的波動小一些.故選B.點睛:本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.3、A【解析】

根據眾數、中位數的定義分別進行解答即可.【詳解】由表知數據5出現了6次,次數最多,所以眾數為5;因為共有20個數據,所以中位數為第10、11個數據的平均數,即中位數為=6,故選A.【點睛】本題考查了眾數和中位數的定義.用到的知識點:一組數據中出現次數最多的數據叫做這組數據的眾數.將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.4、B【解析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.5、C【解析】

由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,由三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大小.【詳解】∵四邊形ABCD是平行四邊形,∴,由折疊的性質得:,,∴,,∴;故選C.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.6、B【解析】

過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據勾股定理得到AF===,根據平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質得到=,求得AM=AF=,根據相似三角形的性質得到=,求得AN=AF=,即可得到結論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構造相似三角形是本題的關鍵,且求長度問題一般需用到勾股定理來解決,常作垂線7、D【解析】

根據分式的分子分母都乘以(或除以)同一個不為零的數(整式),分式的值不變,可得答案.【詳解】A、2-3B、分子、分母同時乘以﹣1,分式的值不發生變化,故B正確;C、分子、分母同時乘以3,分式的值不發生變化,故C正確;D、yx≠y故選:D.【點睛】本題考查了分式的基本性質,分式的分子分母都乘以(或除以)同一個不為零的數(整式),分式的值不變.8、A【解析】

根據有理數的加法法則進行計算即可.【詳解】故選:A.【點睛】本題主要考查有理數的加法,掌握有理數的加法法則是解題的關鍵.9、C【解析】圓錐的側面積=底面周長×母線長÷2,把相應數值代入,圓錐的側面積=2π×2×5÷2=10π.故答案為C10、C【解析】

根據中心對稱圖形的概念進行分析.【詳解】A、不是中心對稱圖形,故此選項錯誤;

B、不是中心對稱圖形,故此選項錯誤;

C、是中心對稱圖形,故此選項正確;

D、不是中心對稱圖形,故此選項錯誤;

故選:C.【點睛】考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、A3()【解析】

設直線y=與x軸的交點為G,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,由條件可求得,再根據等腰三角形可分別求得A1D、A2E、A3F,可得到A1,A2,A3的坐標.【詳解】設直線y=與x軸的交點為G,

令y=0可解得x=-4,

∴G點坐標為(-4,0),

∴OG=4,

如圖1,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,

∵△A1B1O為等腰直角三角形,

∴A1D=OD,

又∵點A1在直線y=x+上,

∴=,即=,解得A1D=1=()0,

∴A1(1,1),OB1=2,

同理可得=,即=,解得A2E==()1,則OE=OB1+B1E=,

∴A2(,),OB2=5,

同理可求得A3F==()2,則OF=5+=,

∴A3(,);故答案為(,)【點睛】本題主要考查等腰三角形的性質和直線上點的坐標特點,根據題意找到點的坐標的變化規律是解題的關鍵,注意觀察數據的變化.12、﹣1.【解析】

解:在實數﹣1、0、﹣1、1、中,最小的是﹣1,故答案為﹣1.【點睛】本題考查實數大小比較.13、(2,2).【解析】

連結OA,根據勾股定理可求OA,再根據點與圓的位置關系可得一個符合要求的點B的坐標.【詳解】如圖,連結OA,OA==5,∵B為⊙O內一點,∴符合要求的點B的坐標(2,2)答案不唯一.故答案為:(2,2).【點睛】考查了點與圓的位置關系,坐標與圖形性質,關鍵是根據勾股定理得到OA的長.14、1:2【解析】

△ABC與△DEF是位似三角形,則DF∥AC,EF∥BC,先證明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,據此可得答案.【詳解】解:∵△ABC與△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,則OE:EB=1:2故答案為:1:2【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,位似圖形的對應頂點的連線平行或共線.15、y=x2等【解析】分析:根據二次函數的圖象開口向上知道a>1,又二次函數的圖象過原點,可以得到c=1,所以解析式滿足a>1,c=1即可.詳解:∵二次函數的圖象開口向上,∴a>1.∵二次函數的圖象過原點,∴c=1.故解析式滿足a>1,c=1即可,如y=x2.故答案為y=x2(答案不唯一).點睛:本題是開放性試題,考查了二次函數的性質,二次函數圖象上點的坐標特征,對考查學生所學函數的深入理解、掌握程度具有積極的意義,但此題若想答對需要滿足所有條件,如果學生沒有注意某一個條件就容易出錯.本題的結論是不唯一的,其解答思路滲透了數形結合的數學思想.16、a≥﹣1且a≠1【解析】

利用一元二次方程的定義和判別式的意義得到≠1且△=(﹣1)2﹣4a?(﹣)≥1,然后求出兩個不等式的公共部分即可.【詳解】根據題意得a≠1且△=(﹣1)2﹣4a?(﹣)≥1,解得:a≥﹣1且a≠1.故答案為a≥﹣1且a≠1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:當△>1時,方程有兩個不相等的兩個實數根;當△=1時,方程有兩個相等的兩個實數根;當△<1時,方程無實數根.三、解答題(共8題,共72分)17、(1)m=-6,點D的坐標為(-2,3);(2);(3)當或時,一次函數的值大于反比例函數的值.【解析】

(1)將點C的坐標(6,-1)代入即可求出m,再把D(n,3)代入反比例函數解析式求出n即可.(2)根據C(6,-1)、D(-2,3)得出直線CD的解析式,再求出直線CD與x軸和y軸的交點即可,得出OA、OB的長,再根據銳角三角函數的定義即可求得;(3)根據函數的圖象和交點坐標即可求得.【詳解】⑴把C(6,-1)代入,得.則反比例函數的解析式為,把代入,得,∴點D的坐標為(-2,3).⑵將C(6,-1)、D(-2,3)代入,得,解得.∴一次函數的解析式為,∴點B的坐標為(0,2),點A的坐標為(4,0).∴,在在中,∴.⑶根據函數圖象可知,當或時,一次函數的值大于反比例函數的值【點睛】此題考查了反比例函數與一次函數的交點問題.其知識點有解直角三角形,待定系數法求解析式,此題難度適中,注意掌握數形結合思想與方程思想的應用.18、x=15,y=1【解析】

根據概率的求法:在圍棋盒中有x顆黑色棋子和y顆白色棋子,共x+y顆棋子,如果它是黑色棋子的概率是,有成立.化簡可得y與x的函數關系式;

(2)若往盒中再放進10顆黑色棋子,在盒中有10+x+y顆棋子,則取得黑色棋子的概率變為,結合(1)的條件,可得,解可得x=15,y=1.【詳解】依題意得,,化簡得,,解得,.,檢驗當x=15,y=1時,,,∴x=15,y=1是原方程的解,經檢驗,符合題意.答:x=15,y=1.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.19、(1);(2)2<m<;(1)m=6或m=﹣1.【解析】

(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,由此即可解決問題;(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解不等式組即可解決問題;(1)情形1,四邊形PMP′N能成為正方形.作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,推出PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系數法即可解決問題;情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系數法即可解決問題.【詳解】(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,∴拋物線C的函數表達式為.(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解得2<m<,∴滿足條件的m的取值范圍為2<m<.(1)結論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點M在上,∴,解得m=﹣1或﹣﹣1(舍棄),∴m=﹣1時,四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍棄),∴m=6時,四邊形PMP′N是正方形.綜上所述:m=6或m=﹣1時,四邊形PMP′N是正方形.20、(1);(1)時,取最大值,為.【解析】

(1)分別延長DE,FP,與BC的延長線相交于G,H,由AF=x知CH=x-4,根據,即可得z=,利用矩形的面積公式即可得出解析式;

(1)將(1)中所得解析式配方成頂點式,利用二次函數的性質解答可得.【詳解】解:(1)分別延長DE,FP,與BC的延長線相交于G,H,

∵AF=x,

∴CH=x-4,

設AQ=z,PH=BQ=6-z,

∵PH∥EG,

∴,即,

化簡得z=,

∴y=?x=-x1+x(4≤x≤10);

(1)y=-x1+x=-(x-)1+,

當x=dm時,y取最大值,最大值是dm1.【點睛】本題考查了二次函數的應用,解題的關鍵是根據相似三角形的性質得出矩形另一邊AQ的長及二次函數的性質.21、(1)7cm(2)若C為線段AB上任意一點,且滿足AC+CB=a(cm),其他條件不變,則MN=a(cm);理由詳見解析(3)b(cm)【解析】

(1)據“點M、N分別是AC、BC的中點”,先求出MC、CN的長度,再利用MN=CM+CN即可求出MN的長度即可.(2)據題意畫出圖形即可得出答案.(3)據題意畫出圖形即可得出答案.【詳解】(1)如圖∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵點M、N分別是AC、BC的中點,∴MC=AC,CN=BC,∴MN=AC+BC=(AC+BC)=AB=7cm.答:MN的長為7cm.(2)若C為線段AB上任一點,滿足AC+CB=acm,其它條件不變,則MN=cm,理由是:∵點M、N分別是AC、BC的中點,∴MC=AC,CN=BC,∵AC+CB=acm,∴MN=AC+BC=(AC+BC)=cm.(3)解:如圖,∵點M、N分別是AC、BC的中點,∴MC=AC,CN=BC,∵AC-CB=bcm,∴MN=AC-BC=(AC-BC)=cm.考點:兩點間的距離.22、(1)見解析(2)A-國學誦讀(3)360人【解析】

(1)根據統計圖中C的人數和所占百分比可求出被調查的總人數,進而求出活動B和D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論