




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年甘肅省天水市十校聯考最后數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示的幾何體的俯視圖是()A. B. C. D.2.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示cosα的值,錯誤的是(
)A. B. C. D.3.邊長相等的正三角形和正六邊形的面積之比為()A.1∶3 B.2∶3 C.1∶6 D.1∶4.統計學校排球隊員的年齡,發現有12、13、14、15等四種年齡,統計結果如下表:年齡(歲)12131415人數(個)2468根據表中信息可以判斷該排球隊員年齡的平均數、眾數、中位數分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、155.如果將拋物線向下平移1個單位,那么所得新拋物線的表達式是A. B. C. D.6.對于數據:6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數據的平均數是6,中位數是6 B.這組數據的平均數是6,中位數是7C.這組數據的平均數是5,中位數是6 D.這組數據的平均數是5,中位數是77.如圖,△ABC內接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.8.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.9.下列各運算中,計算正確的是()A. B.C. D.10.如圖,在平面直角坐標系中,△OAB的頂點A在x軸正半軸上,OC是△OAB的中線,點B、C在反比例函數y=(x>0)的圖象上,則△OAB的面積等于()A.2 B.3 C.4 D.611.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.12.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,AB=5,AC=4,BC=3,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB、AC于點M、N;②分別以點M、N為圓心,以大于的長為半徑作弧,兩弧相交于點E;③作射線AE;④以同樣的方法作射線BF,AE交BF于點O,連接OC,則OC=________.14.為了了解貫徹執行國家提倡的“陽光體育運動”的實施情況,將某班50名同學一周的體育鍛煉情況繪制成了如圖所示的條形統計圖,根據統計圖提供的數據,該班50名同學一周參加體育鍛煉時間的中位數與眾數之和為_____.15.如圖,一個直角三角形紙片,剪去直角后,得到一個四邊形,則∠1+∠2=_______度.16.在Rt△ABC中,∠C=90°,若AB=4,sinA=,則斜邊AB邊上的高CD的長為________.17.如圖,等邊三角形的頂點A(1,1)、B(3,1),規定把等邊△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,如果這樣連續經過2018次變換后,等邊△ABC的頂點C的坐標為_____.18.已知⊙O的半徑為5,由直徑AB的端點B作⊙O的切線,從圓周上一點P引該切線的垂線PM,M為垂足,連接PA,設PA=x,則AP+2PM的函數表達式為______,此函數的最大值是____,最小值是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB為⊙O的直徑,點C在⊙O上,AD⊥CD于點D,且AC平分∠DAB,求證:(1)直線DC是⊙O的切線;(2)AC2=2AD?AO.20.(6分)如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結FD、BE、BF,設OP=t.(1)直接寫出點E的坐標(用含t的代數式表示):;(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.21.(6分)如圖,拋物線與y軸交于A點,過點A的直線與拋物線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0).(1)求直線AB的函數關系式;(2)動點P在線段OC上從原點出發以每秒一個單位的速度向C移動,過點P作PN⊥x軸,交直線AB于點M,交拋物線于點N.設點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數關系式,并寫出t的取值范圍;(3)設在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由22.(8分)如圖,經過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關于直線x=2對稱,求拋物線的函數表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.23.(8分)一輛汽車,新車購買價30萬元,第一年使用后折舊,以后該車的年折舊率有所變化,但它在第二、三年的年折舊率相同.已知在第三年年末,這輛車折舊后價值為萬元,求這輛車第二、三年的年折舊率.24.(10分)如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點E,交CB的延長線于點F,連接AF,BE.(1)求證:△AGE≌△BGF;(2)試判斷四邊形AFBE的形狀,并說明理由.25.(10分)今年深圳“讀書月”期間,某書店將每本成本為30元的一批圖書,以40元的單價出售時,每天的銷售量是300本.已知在每本漲價幅度不超過10元的情況下,若每本漲價1元,則每天就會少售出10本,設每本書上漲了x元.請解答以下問題:(1)填空:每天可售出書本(用含x的代數式表示);(2)若書店想通過售出這批圖書每天獲得3750元的利潤,應漲價多少元?26.(12分)如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F是AE與⊙O的交點,AC平分∠BAE.求證:DE是⊙O的切線;若AE=6,∠D=30°,求圖中陰影部分的面積.27.(12分)已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.求證:AB=AF;若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:根據俯視圖的作法即可得出結論.從上往下看該幾何體的俯視圖是D.故選D.考點:簡單幾何體的三視圖.2、D【解析】
根據銳角三角函數的定義,余弦是鄰邊比斜邊,可得答案.【詳解】cosα=.故選D.【點睛】熟悉掌握銳角三角函數的定義是關鍵.3、C【解析】解:設正三角形的邊長為1a,則正六邊形的邊長為1a.過A作AD⊥BC于D,則∠BAD=30°,AD=AB?cos30°=1a?=a,∴S△ABC=BC?AD=×1a×a=a1.連接OA、OB,過O作OD⊥AB.∵∠AOB==20°,∴∠AOD=30°,∴OD=OB?cos30°=1a?=a,∴S△ABO=BA?OD=×1a×a=a1,∴正六邊形的面積為:2a1,∴邊長相等的正三角形和正六邊形的面積之比為:a1:2a1=1:2.故選C.點睛:本題主要考查了正三角形與正六邊形的性質,根據已知利用解直角三角形知識求出正六邊形面積是解題的關鍵.4、B【解析】
根據加權平均數、眾數、中位數的計算方法求解即可.【詳解】,15出現了8次,出現的次數最多,故眾數是15,從小到大排列后,排在10、11兩個位置的數是14,14,故中位數是14.故選B.【點睛】本題考查了平均數、眾數與中位數的意義.數據x1、x2、……、xn的加權平均數:(其中w1、w2、……、wn分別為x1、x2、……、xn的權數).一組數據中出現次數最多的數據叫做眾數.中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(或最中間兩個數的平均數),叫做這組數據的中位數.5、C【解析】
根據向下平移,縱坐標相減,即可得到答案.【詳解】∵拋物線y=x2+2向下平移1個單位,∴拋物線的解析式為y=x2+2-1,即y=x2+1.故選C.6、C【解析】
根據題目中的數據可以按照從小到大的順序排列,從而可以求得這組數據的平均數和中位數.【詳解】對于數據:6,3,4,7,6,0,1,這組數據按照從小到大排列是:0,3,4,6,6,7,1,這組數據的平均數是:中位數是6,故選C.【點睛】本題考查了平均數、中位數的求法,解決本題的關鍵是明確它們的意義才會計算,求平均數是用一組數據的和除以這組數據的個數;中位數的求法分兩種情況:把一組數據從小到大排成一列,正中間如果是一個數,這個數就是中位數,如果正中間是兩個數,那中位數是這兩個數的平均數.7、C.【解析】試題分析:如答圖,過點O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點:1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數定義.8、B【解析】
陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【詳解】解:由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【點睛】本題考查了旋轉的性質與扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質與扇形面積的計算.9、D【解析】
利用同底數冪的除法法則、同底數冪的乘法法則、冪的乘方法則以及完全平方公式即可判斷.【詳解】A、,該選項錯誤;B、,該選項錯誤;C、,該選項錯誤;D、,該選項正確;故選:D.【點睛】本題考查了同底數冪的乘法、除法法則,冪的乘方法則以及完全平方公式,正確理解法則是關鍵.10、B【解析】
作BD⊥x軸于D,CE⊥x軸于E,∴BD∥CE,∴,∵OC是△OAB的中線,∴,設CE=x,則BD=2x,∴C的橫坐標為,B的橫坐標為,∴OD=,OE=,∴DE=OE-OD=﹣=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA?BD=×=1.故選B.點睛:本題是反比例函數與幾何的綜合題,熟知反比例函數的圖象上點的特征和相似三角形的判定和性質是解題的關鍵.11、D【解析】
根據圓心角,弧,弦的關系定理可以得出===,根據圓心角和圓周角的關鍵即可求出的度數,進而求出它的余弦值.【詳解】解:===,故選D.【點睛】本題考查圓心角,弧,弦,圓周角的關系,熟記特殊角的三角函數值是解題的關鍵.12、B【解析】
先依據勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【詳解】在△ABC中,依據勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【點睛】本題主要考查的是相切兩圓的性質、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】
直接利用勾股定理的逆定理結合三角形內心的性質進而得出答案.【詳解】過點O作OD⊥BC,OG⊥AC,垂足分別為D,G,由題意可得:O是△ACB的內心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四邊形OGCD是正方形,∴DO=OG==1,∴CO=.故答案為.【點睛】此題主要考查了基本作圖以及三角形的內心,正確得出OD的長是解題關鍵.14、17【解析】∵8是出現次數最多的,∴眾數是8,∵這組數據從小到大的順序排列,處于中間位置的兩個數都是9,∴中位數是9,所以中位數與眾數之和為8+9=17.故答案為17小時.15、270【解析】
根據三角形的內角和與平角定義可求解.【詳解】解析:如圖,根據題意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案為:270度.【點睛】本題主要考查了三角形的內角和定理和內角與外角之間的關系.要會熟練運用內角和定理求角的度數.16、【解析】如圖,∵在Rt△ABC中,∠C=90°,AB=4,sinA=,∴BC=,∴AC=,∵CD是AB邊上的高,∴CD=AC·sinA=.故答案為:.17、(﹣2016,+1)【解析】
據軸對稱判斷出點C變換后在x軸上方,然后求出點C縱坐標,再根據平移的距離求出點A變換后的橫坐標,最后寫出即可.【詳解】解:∵△ABC是等邊三角形AB=3﹣1=2,∴點C到x軸的距離為1+2×=+1,橫坐標為2,∴C(2,+1),第2018次變換后的三角形在x軸上方,點C的縱坐標為+1,橫坐標為2﹣2018×1=﹣2016,所以,點C的對應點C′的坐標是(﹣2016,+1)故答案為:(﹣2016,+1)【點睛】本題考查坐標與圖形變化,平移和軸對稱變換,等邊三角形的性質,讀懂題目信息,確定出連續2018次這樣的變換得到三角形在x軸上方是解題的關鍵.18、x2+x+20(0<x<10)不存在.【解析】
先連接BP,AB是直徑,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求從而有(0<x<10),再根據二次函數的性質,可求函數的最大值.【詳解】如圖所示,連接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴∴(0<x<10),∵∴AP+2PM有最大值,沒有最小值,∴y最大值=故答案為(0<x<10),,不存在.【點睛】考查相似三角形的判定與性質,二次函數的最值等,綜合性比較強,需要熟練掌握.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析.(2)證明見解析.【解析】分析:(1)連接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,據此知OC∥AD,根據AD⊥DC即可得證;(2)連接BC,證△DAC∽△CAB即可得.詳解:(1)如圖,連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切線;(2)連接BC,∵AB為⊙O的直徑,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴,即AC2=AB?AD,∵AB=2AO,∴AC2=2AD?AO.點睛:本題主要考查圓的切線,解題的關鍵是掌握切線的判定、圓周角定理及相似三角形的判定與性質.20、(1)、(t+6,t);(2)、當t=2時,S有最小值是16;(3)、理由見解析.【解析】
(1)如圖所示,過點E作EG⊥x軸于點G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點E的坐標為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當t=2時,S有最小值是16;(3)①假設∠FBD為直角,則點F在直線BC上,∵PF=OP<AB,∴點F不可能在BC上,即∠FBD不可能為直角;②假設∠FDB為直角,則點D在EF上,∵點D在矩形的對角線PE上,∴點D不可能在EF上,即∠FDB不可能為直角;③假設∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點H,則FH=PA,即4﹣t=6﹣t,方程無解,∴假設不成立,即△BDF不可能是等腰直角三角形.21、(1);(2)(0≤t≤3);(3)t=1或2時;四邊形BCMN為平行四邊形;t=1時,平行四邊形BCMN是菱形,t=2時,平行四邊形BCMN不是菱形,理由見解析.【解析】
(1)由A、B在拋物線上,可求出A、B點的坐標,從而用待定系數法求出直線AB的函數關系式.(2)用t表示P、M、N的坐標,由等式得到函數關系式.(3)由平行四邊形對邊相等的性質得到等式,求出t.再討論鄰邊是否相等.【詳解】解:(1)x=0時,y=1,∴點A的坐標為:(0,1),∵BC⊥x軸,垂足為點C(3,0),∴點B的橫坐標為3,當x=3時,y=,∴點B的坐標為(3,),設直線AB的函數關系式為y=kx+b,,解得,,則直線AB的函數關系式(2)當x=t時,y=t+1,∴點M的坐標為(t,t+1),當x=t時,∴點N的坐標為(0≤t≤3);(3)若四邊形BCMN為平行四邊形,則有MN=BC,
∴,解得t1=1,t2=2,∴當t=1或2時,四邊形BCMN為平行四邊形,
①當t=1時,MP=,PC=2,∴MC==MN,此時四邊形BCMN為菱形,②當t=2時,MP=2,PC=1,∴MC=≠MN,此時四邊形BCMN不是菱形.【點睛】本題考查的是二次函數的性質、待定系數法求函數解析式、菱形的判定,正確求出二次函數的解析式、利用配方法把一般式化為頂點式、求出函數的最值是解題的關鍵,注意菱形的判定定理的靈活運用.22、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】
(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對稱軸,A(﹣2,0),∴B(6,0),∵點C(0,﹣4),將A,B,C的坐標分別代入,解得:,,,∴拋物線的函數表達式為;(3)存在,理由為:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關于直線x=2對稱,∴由拋物線的對稱性可知,E點的橫坐標為4,又∵OC=4,∴E的縱坐標為﹣4,∴存在點E(4,﹣4);(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點E′的縱坐標是4,∴,解得:,,∴點E′的坐標為(,4),同理可得點E″的坐標為(,4).23、這輛車第二、三年的年折舊率為.【解析】
設這輛車第二、三年的年折舊率為x,則第二年這就后的價格為30(1-20%)(1-x)元,第三年折舊后的而價格為30(1-20%)(1-x)2元,與第三年折舊后的價格為17.34萬元建立方程求出其解即可.【詳解】設這輛車第二、三年的年折舊率為,依題意,得整理得,解得,.因為折舊率不可能大于1,所以不合題意,舍去.所以答:這輛車第二、三年的年折舊率為.【點睛】本題是一道折舊率問題,考查了列一元二次方程解實際問題的運用,解答本題時設出折舊率,表示出第三年的折舊后價格并運用價格為11.56萬元建立方程是關鍵.24、(1)證明見解析(2)四邊形AFBE是菱形【解析】試題分析:(1)由平行四邊形的性質得出AD∥BC,得出∠AEG=∠BFG,由AAS證明△AGE≌△BGF即可;(2)由全等三角形的性質得出AE=BF,由AD∥BC,證出四邊形AFBE是平行四邊形,再根據EF⊥AB,即可得出結論.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四邊形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四邊形AFBE是平行四邊形,又∵EF⊥AB,∴四邊形AFBE是菱形.考點:平行四邊形的性質;全等三角形的判定與性質;線段垂直平分線的性質;探究型.25、(1)(300﹣10x).(2)每本書應漲價5元.【解析】試題分析:(1)每本漲價1元,則每天就會少售出10本,設每本書上漲了x元,則每天就會少售出10x本,所以每天可售出書(300﹣10x)本;(2)根據每本圖書的利潤×每天銷售圖書的數量=總利潤
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海海事職業技術學院《能源生產解決方案》2023-2024學年第二學期期末試卷
- 彭水雙拼別墅施工方案
- 威海鋼質潔凈門施工方案
- 2025簡化版企業抵押借款合同范本
- 2025至2030年中國錦一氫絕緣紙數據監測研究報告
- 2025我愛我家房屋買賣合同范本
- 2025至2030年中國離子選擇電極數據監測研究報告
- 2025至2030年中國電離子魔術球數據監測研究報告
- 2025至2030年中國靈是雕塑數據監測研究報告
- 2025至2030年中國植絨吸塑盤數據監測研究報告
- 燃氣工程專業中級職稱理論考試題庫-建設工程專業中級職稱理論考試題庫
- 十二指腸球部潰瘍PPT課件
- 鐵路建設項目施工企業信用評價辦法(鐵總建設〔2018〕124號)
- 誘導公式練習題-(中職)
- 2016年浦東新區公辦小學招生地段
- 鴿巢問題(例1、例2)[1]
- 01戴明十四條
- 完整版佛教葬禮儀式
- 【課件】第六章 模型或原型的制作課件-高中通用技術蘇教版(2019)必修《技術與設計1》
- 鍋爐除氧器過程控制課程設計
- 統計法培訓課PPT課件
評論
0/150
提交評論