河南名校2024屆高三下學期聯合考試數學試題含解析_第1頁
河南名校2024屆高三下學期聯合考試數學試題含解析_第2頁
河南名校2024屆高三下學期聯合考試數學試題含解析_第3頁
河南名校2024屆高三下學期聯合考試數學試題含解析_第4頁
河南名校2024屆高三下學期聯合考試數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南名校2024屆高三下學期聯合考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(,)是上的奇函數,若的圖象關于直線對稱,且在區間上是單調函數,則()A. B. C. D.2.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或3.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}4.已知,,,若,則正數可以為()A.4 B.23 C.8 D.175.已知函數,若,且,則的取值范圍為()A. B. C. D.6.函數的最大值為,最小正周期為,則有序數對為()A. B. C. D.7.下列與函數定義域和單調性都相同的函數是()A. B. C. D.8.在平面直角坐標系中,若不等式組所表示的平面區域內存在點,使不等式成立,則實數的取值范圍為()A. B. C. D.9.已知函數,若函數的所有零點依次記為,且,則()A. B. C. D.10.設f(x)是定義在R上的偶函數,且在(0,+∞)單調遞減,則()A. B.C. D.11.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.12.已知函數()的部分圖象如圖所示.則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,則曲線在點處的切線方程為___________.14.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數,不等式,則實數的取值范圍是______.15.已知等比數列的各項均為正數,,則的值為________.16.已知數列的前項和為且滿足,則數列的通項_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.18.(12分)求函數的最大值.19.(12分)在直角坐標系中,直線的參數方程為(為參數),直線的參數方程為,(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)求的極坐標方程和的直角坐標方程;(Ⅱ)設分別交于兩點(與原點不重合),求的最小值.20.(12分)數列滿足.(1)求數列的通項公式;(2)設,為的前n項和,求證:.21.(12分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.22.(10分)已知橢圓的左、右焦點分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點,且過的直線與橢圓交于兩點,設且.(1)求點的坐標;(2)求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據函數為上的奇函數可得,由函數的對稱軸及單調性即可確定的值,進而確定函數的解析式,即可求得的值.【詳解】函數(,)是上的奇函數,則,所以.又的圖象關于直線對稱可得,,即,,由函數的單調區間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數的圖象與性質的綜合應用,由對稱軸、奇偶性及單調性確定參數,屬于中檔題.2、D【解析】

由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.3、B【解析】

按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎題.4、C【解析】

首先根據對數函數的性質求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數可以為8.故選:C【點睛】本題考查對數函數的性質的應用,屬于基礎題.5、A【解析】分析:作出函數的圖象,利用消元法轉化為關于的函數,構造函數求得函數的導數,利用導數研究函數的單調性與最值,即可得到結論.詳解:作出函數的圖象,如圖所示,若,且,則當時,得,即,則滿足,則,即,則,設,則,當,解得,當,解得,當時,函數取得最小值,當時,;當時,,所以,即的取值范圍是,故選A.點睛:本題主要考查了分段函數的應用,構造新函數,求解新函數的導數,利用導數研究新函數的單調性和最值是解答本題的關鍵,著重考查了轉化與化歸的數學思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.6、B【解析】函數(為輔助角)∴函數的最大值為,最小正周期為故選B7、C【解析】

分析函數的定義域和單調性,然后對選項逐一分析函數的定義域、單調性,由此確定正確選項.【詳解】函數的定義域為,在上為減函數.A選項,的定義域為,在上為增函數,不符合.B選項,的定義域為,不符合.C選項,的定義域為,在上為減函數,符合.D選項,的定義域為,不符合.故選:C【點睛】本小題主要考查函數的定義域和單調性,屬于基礎題.8、B【解析】

依據線性約束條件畫出可行域,目標函數恒過,再分別討論的正負進一步確定目標函數與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區域,要使不等式組所表示的平面區域內存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數的取值范圍為,故選:B.【點睛】本題考查由目標函數有解求解參數取值范圍問題,分類討論與數形結合思想,屬于中檔題9、C【解析】

令,求出在的對稱軸,由三角函數的對稱性可得,將式子相加并整理即可求得的值.【詳解】令,得,即對稱軸為.函數周期,令,可得.則函數在上有8條對稱軸.根據正弦函數的性質可知,將以上各式相加得:故選:C.【點睛】本題考查了三角函數的對稱性,考查了三角函數的周期性,考查了等差數列求和.本題的難點是將所求的式子拆分為的形式.10、D【解析】

利用是偶函數化簡,結合在區間上的單調性,比較出三者的大小關系.【詳解】是偶函數,,而,因為在上遞減,,即.故選:D【點睛】本小題主要考查利用函數的奇偶性和單調性比較大小,屬于基礎題.11、A【解析】

利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.12、C【解析】

由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,,即,解得;因為所以,當時,.故選:C.【點睛】本題主要考查了由三角函數的圖象求解析式和已知函數值求自變量,考查三角恒等變換在三角函數化簡中的應用,難度一般.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據導數的幾何意義求出切線的斜率,利用點斜式求切線方程.【詳解】因為,所以,又故切線方程為,整理為,故答案為:【點睛】本題主要考查了導數的幾何意義,切線方程,屬于容易題.14、【解析】

由題意可設,,,由向量的坐標運算,以及恒成立思想可設,的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設,,,,可得,可得的終點均在直線上,由于為任意實數,可得時,的最小值即為點到直線的距離,可得,對于任意的實數,不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.15、【解析】

運用等比數列的通項公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.【點睛】本題考查等比數列的通項公式及應用,考查計算能力,屬于基礎題.16、【解析】

先求得時;再由可得時,兩式作差可得,進而求解.【詳解】當時,,解得;由,可知當時,,兩式相減,得,即,所以數列是首項為,公比為的等比數列,所以,故答案為:【點睛】本題考查由與的關系求通項公式,考查等比數列的通項公式的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)由題可知,根據三角形的中位線的性質,得出,根據矩形的性質得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據面面垂直的性質,得出平面,從而得出到平面的距離為,結合棱錐的體積公式,即可求得結果.【詳解】解:(1)∵,分別為,的中點,∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點,,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因為四邊形是矩形,,,,設幾何體的體積為,則,∴,即:.【點睛】本題考查線面平行的判定、面面垂直的性質和棱錐的體積公式,考查邏輯推理和計算能力.18、【解析】

試題分析:由柯西不等式得試題解析:因為,所以.等號當且僅當,即時成立.所以的最大值為.考點:柯西不等式求最值19、(Ⅰ)直線的極坐標方程為,直線的極坐標方程為,的直角坐標方程為;(Ⅱ)2.【解析】

(Ⅰ)由定義可直接寫出直線的極坐標方程,對曲線同乘可得:,轉化成直角坐標為;(Ⅱ)分別聯立兩直線和曲線的方程,由得,由得,則,結合三角函數即可求解;【詳解】(Ⅰ)直線的極坐標方程為,直線的極坐標方程為由曲線的極坐標方程得,所以的直角坐標方程為.(Ⅱ)與的極坐標方程聯立得所以.與的極坐標方程聯立得所以.所以.所以當時,取最小值2.【點睛】本題考查參數方程與極坐標方程的互化,極坐標方程與直角坐標方程的互化,極坐標中的幾何意義,屬于中檔題20、(1)(2)證明見解析【解析】

(1)利用與的關系即可求解.(2)利用裂項求和法即可求解.【詳解】解析:(1)當時,;當,,可得,又∵當時也成立,;(2),【點睛】本題主要考查了與的關系、裂項求和法,屬于基礎題.21、(1)曲線的直角坐標方程為,曲線的參數方程為為參數(2)【解析】

(1)將代入,可得,所以曲線的直角坐標方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數方程為為參數.(2)由題可設,,,所以,,,所以,因為,所以,所以當,即時,l取得最大值為,所以的周長的最大值為.22、(1);(2).【解析】

(1)設出的坐標,代入,結合在拋物線上,求得兩點的橫坐標,進而

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論