




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖北省恩施州巴東一中高三第二次診斷性檢測數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.2.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.3.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.4.在各項均為正數的等比數列中,若,則()A. B.6 C.4 D.55.已知,,,,.若實數,滿足不等式組,則目標函數()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值6.已知整數滿足,記點的坐標為,則點滿足的概率為()A. B. C. D.7.已知向量,,設函數,則下列關于函數的性質的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數8.已知集合,則集合()A. B. C. D.9.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.10.函數在上的大致圖象是()A. B.C. D.11.本次模擬考試結束后,班級要排一張語文、數學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種12.某幾何體的三視圖如圖所示,若側視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若存在實數使得不等式在某區間上恒成立,則稱與為該區間上的一對“分離函數”,下列各組函數中是對應區間上的“分離函數”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.14.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續固定相鄰的2個螺栓.則不同的固定螺栓方式的種數是________.15.已知集合,,則_____________.16.已知實數,對任意,有,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.18.(12分)求下列函數的導數:(1)(2)19.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.20.(12分)數列的前項和為,且.數列滿足,其前項和為.(1)求數列與的通項公式;(2)設,求數列的前項和.21.(12分)的內角,,的對邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.22.(10分)在平面直角坐標系中,直線的的參數方程為(其中為參數),以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線經過點.曲線的極坐標方程為.(1)求直線的普通方程與曲線的直角坐標方程;(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.2、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關系及其判定.【思路點睛】先根據兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.3、A【解析】
根據直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.4、D【解析】
由對數運算法則和等比數列的性質計算.【詳解】由題意.故選:D.【點睛】本題考查等比數列的性質,考查對數的運算法則.掌握等比數列的性質是解題關鍵.5、B【解析】
判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數一定有最大值和最小值.故選:B【點睛】本題考查了目標函數最值是否存在問題,考查了數形結合思想,考查了不等式的性質應用.6、D【解析】
列出所有圓內的整數點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數,所以所有滿足條件的點是位于圓(含邊界)內的整數點,滿足條件的整數點有共37個,滿足的整數點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學生的應用能力.7、D【解析】
當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數.本題選擇D選項.8、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.9、A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數基礎題.10、D【解析】
討論的取值范圍,然后對函數進行求導,利用導數的幾何意義即可判斷.【詳解】當時,,則,所以函數在上單調遞增,令,則,根據三角函數的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數的圖像,考查了導數與函數單調性的關系以及導數的幾何意義,屬于中檔題.11、B【解析】
利用分步計數原理結合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題12、C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】
由題意可知,若要存在使得成立,我們可考慮兩函數是否存在公切點,若兩函數在公切點對應的位置一個單增,另一個單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點可知,,進而判斷【詳解】①時,令,則,單調遞增,,即.令,則,單調遞減,,即,因此,滿足題意.②時,易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時,注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調遞增,在上單調遞減,所以,即.令,則,易知在上單調遞減,在上單調遞增,所以,即.因此,滿足題意.故答案為:①②④【點睛】本題考查新定義題型、利用導數研究函數圖像,轉化與化歸思想,屬于中檔題14、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數原理,可以求得共有10種方法,利用分步乘法計數原理,求得總共有種方法.詳解:根據題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘的時候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數原理和分步乘法計數原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.15、【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.【點睛】本題考查了交集及其運算,屬于基礎題.16、-1【解析】
由二項式定理及展開式系數的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點睛】本題考查了二項式定理及展開式系數的求法,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據焦點坐標和離心率,結合橢圓中的關系,即可求得的值,進而得橢圓的標準方程.(2)設出直線的方程為,由題意可知為中點.聯立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運算及數量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數量積公式并化簡,由換元法令,代入可得,再令及,結合函數單調性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.【詳解】(1)分別是橢圓的左焦點和右焦點,則,橢圓的離心率為則解得,所以,所以的方程為.(2)設直線的方程為,點滿足,則為中點,點在圓上,設,聯立直線與橢圓方程,化簡可得,所以則,化簡可得,而由弦長公式代入可得為中點,則點在圓上,代入化簡可得,所以令,則,,令,則令,則,所以,因為在內單調遞增,所以,即所以【點睛】本題考查了橢圓的標準方程求法,直線與橢圓的位置關系綜合應用,由韋達定理研究參數間的關系,平面向量的線性運算與數量積運算,弦長公式的應用及換元法在求取值范圍問題中的綜合應用,計算量大,屬于難題.18、(1);(2).【解析】
(1)根據復合函數的求導法則可得結果.(2)同樣根據復合函數的求導法則可得結果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.【點睛】本題考查復合函數的導數,此類問題一般是先把函數分解為簡單函數的復合,再根據復合函數的求導法則可得所求的導數,本題屬于容易題.19、(1);(2)1.【解析】
(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB≠0,所以sinA=cosA,即:tanA=,因為A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長a+b+c=5+7=1.【點睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.20、(1),;(2).【解析】
(1)令可求得的值,令,由得出,兩式相減可推導出數列為等比數列,確定該數列的公比,利用等比數列的通項公式可求得數列的通項公式,再利用對數的運算性質可得出數列的通項公式;(2)運用等差數列的求和公式,運用數列的分組求和和裂項相消求和,化簡可得.【詳解】(1)當時,,所以;當時,,得,即,所以,數列是首項為,公比為的等比數列,.;(2)由(1)知數列是首項為,公差為的等差數列,.,.所以.【點睛】本題考查數列的遞推式的運用,注意結合等比數列的定義和通項公式,考查數列的求和方法:分組求和法和裂項相消求和,考查運算能力,屬于中檔題.21、(1);(2)【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆生產建設兵團一師高級中學2025屆高三第二學期4月模擬考試生物試題含解析
- 商場員工臨時合同協議
- 新疆烏魯木齊市第八十七中學2025屆初三教學質量檢測試題(三模)數學試題試卷含解析
- 新鄉職業技術學院《心理統計學》2023-2024學年第一學期期末試卷
- 2025-2030年中國P2P信貸行業發展狀況分析及投資前景趨勢預測研究報告
- 甘肅省平涼市崇信縣2024屆中考數學模擬試卷含解析
- 甘肅臨夏和政縣2023-2024學年中考一模數學試題含解析
- 2025至2031年中國硝酸咪康唑行業投資前景及策略咨詢研究報告
- 2025年新入職工入職安全培訓考試試題附參考答案(綜合題)
- 2025-2030年中國MS市場運行新形勢與投資前景報告
- 云南省煙草專賣局(公司)2025年上半年高校畢業生招聘(第二批)易考易錯模擬試題(共500題)試卷后附參考答案
- 陜西、山西省天一大聯考2024-2025學年高中畢業班階段性測試(七)英語試題及答案
- 工作室股東合同協議
- 關于市中小學“校園餐”突出問題專項整治情況的報告
- SZDB-Z 173-2016 物業綠化養護管理規范
- 藝考全真樂理試題及答案
- 攝影人像知識篇課件
- 急救知識培訓課件下載
- 酒店培訓技巧
- 鍋爐安裝安全管理制度
- 液壓安全知識培訓課件
評論
0/150
提交評論