




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省昭通市昭陽區蘇家院鄉中學2023年數學九上期末綜合測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每題4分,共48分)1.如圖,內接于圓,,,若,則弧的長為()A. B. C. D.2.方程5x2=6x﹣8化成一元二次方程一般形式后,二次項系數、一次項系數、常數項分別是()A.5、6、﹣8B.5,﹣6,﹣8C.5,﹣6,8D.6,5,﹣83.如圖,重慶歡樂谷的摩天輪是西南地區最高的摩天輪,號稱“重慶之限”.摩天輪是一個圓形,直徑AB垂直水平地面于點C,最低點B離地面的距離BC為1.6米.某天,媽媽帶著洋洋來坐摩天輪,當她站在點D仰著頭看見摩天輪的圓心時,仰角為37o,為了選擇更佳角度為洋洋拍照,媽媽后退了49米到達點D’,當洋洋坐的橋廂F與圓心O在同一水平線時,他俯頭看見媽媽的眼睛,此時俯角為42o,已知媽媽的眼睛到地面的距離為1.6米,媽媽兩次所處的位置與摩天輪在同一平面上,則該摩天輪最高點A離地面的距離AC約是()(參考數據:sin37o≈0.60,tan37o≈0.75,sin42o≈0.67,tan42o≈0.90)A.118.8米 B.127.6米 C.134.4米 D.140.2米4.如圖,四點在⊙上,.則的度數為()A. B. C. D.5.x=1是關于x的一元二次方程x2+ax﹣2b=0的解,則2a﹣4b的值為()A.﹣2 B.﹣1 C.1 D.26.已知△ABC∽△A'B'C',AD和A'D'是它們的對應中線,若AD=10,A'D'=6,則△ABC與△A'B'C'的周長比是()A.3:5 B.9:25 C.5:3 D.25:97.下列成語所描述的事件是不可能事件的是()A.日行千里 B.守株待兔 C.水漲船高 D.水中撈月8.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.9.下列事件中,必然發生的事件是()A.隨意翻到一本書的某頁,這頁的頁碼是奇數B.通常溫度降到0℃以下,純凈的水結冰C.地面發射一枚導彈,未擊中空中目標D.測量某天的最低氣溫,結果為-150℃10.已知點P(2a+1,a﹣1)關于原點對稱的點在第一象限,則a的取值范圍是()A.a<﹣或a>1 B.a<﹣ C.﹣<a<1 D.a>111.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段AC的長為()A.4 B.4 C.6 D.412.如圖,正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,連接AF,則∠OFA的度數是().A.15° B.20° C.25° D.30°二、填空題(每題4分,共24分)13.如圖,邊長為4的正六邊形ABCDEF的中心與坐標原點O重合,AF∥軸,將正六邊形ABCDEF繞原點O順時針旋轉,每次旋轉60°,則第2019次后,頂點A的坐標為_______.14.如圖,直線y=kx與雙曲線y=(x>0)交于點A(1,a),則k=_____.15.如圖是水平放置的水管截面示意圖,已知水管的半徑為50cm,水面寬AB=80cm,則水深CD約為______cm.16.我國古代數學著作《九章算術》中記載了一個問題:“今有邑方不知大小,各開中門,出北門三十步有木,出西門七百五十步見木,問:邑方幾何?”.其大意是:如圖,一座正方形城池,A為北門中點,從點A往正北方向走30步到B處有一樹木,C為西門中點,從點C往正西方向走750步到D處正好看到B處的樹木,則正方形城池的邊長為_____步.17.若拋物線y=x2﹣4x+m與直線y=kx﹣13(k≠0)交于點(2,﹣9),則關于x的方程x2﹣4x+m=k(x﹣1)﹣11的解為_____.18.如圖,在平面直角坐標系中,點A是函數圖象上的點,AB⊥x軸,垂足為B,若△ABO的面積為3,則的值為__.三、解答題(共78分)19.(8分)(1)計算:|﹣1|+2sin45°﹣+tan260°;(2)已知:,求.20.(8分)四川是聞名天下的“熊貓之鄉”,每年到大熊貓基地游玩的游客絡繹不絕,大學生小張加入創業項目,項目幫助她在基地附近租店賣創意熊貓紀念品.已知某款熊貓紀念物成本為30元/件,當售價為45元/件時,每天銷售250件,售價每上漲1元,銷量下降10件.(1)求每天的銷售量y(件)與銷售單價x(元)之間的函數關系式;(2)若每天該熊貓紀念物的銷售量不低于240件的情況下,當銷售單價為多少元時,每天獲取的利潤最大?最大利潤是多少?(3)小張決定從這款紀念品每天的銷售利潤中捐出150元給希望工程,為了保證捐款后這款紀念品每天剩余利潤不低于3600元,試確定該熊貓紀念物銷售單價的范圍.21.(8分)如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC于點D,連接BD.(1)求證:∠A=∠CBD.(2)若AB=10,AD=6,M為線段BC上一點,請寫出一個BM的值,使得直線DM與⊙O相切,并說明理由.22.(10分)某水果商場經銷一種高檔水果,原價每千克25元,連續兩次漲價后每千克水果現在的價格為36元.(1)若每次漲價的百分率相同.求每次漲價的百分率;(2)若進價不變,按現價售出,每千克可獲利15元,但該水果出現滯銷,商場決定降價m元出售,同時把降價的幅度m控制在的范圍,經市場調查發現,每天銷售量(千克)與降價的幅度m(元)成正比例,且當時,.求與m的函數解析式;(3)在(2)的條件下,若商場每天銷售該水果盈利元,為確保每天盈利最大,該水果每千克應降價多少元?23.(10分)如圖,拋物線與軸相交于兩點(點在點的左側),與軸相交于點.拋物線上有一點,且.(1)求拋物線的解析式和頂點坐標.(2)當點位于軸下方時,求面積的最大值.(3)①設此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標之差為.求關于的函數解析式,并寫出自變量的取值范圍;②當時,點的坐標是___________.24.(10分)如圖,有一個三等分數字轉盤,小紅先轉動轉盤,指針指向的數字記下為,小芳后轉動轉盤,指針指向的數字記下為,從而確定了點的坐標,(若指針指向分界線,則重新轉動轉盤,直到指針指向數字為止)(1)小紅轉動轉盤,求指針指向的數字2的概率;(2)請用列舉法表示出由,確定的點所有可能的結果.(3)求點在函數圖象上的概率.25.(12分)《海島算經》第一個問題的大意是:如圖,要測量海島上一座山峰的高度,立兩根高丈的標桿和,兩竿之間的距步,成一線,從處退行步到,人的眼睛貼著地面觀察點,三點成一線;從處退行步到,從觀察點,三點也成一-線.試計算山峰的高度及的長.(這里步尺,丈尺,結果用丈表示).怎樣利用相似三角形求得線段及的長呢?請你試一試!26.若為實數,關于的方程的兩個非負實數根為、,求代數式的最大值.
參考答案一、選擇題(每題4分,共48分)1、A【分析】連接OB,OC.首先證明△OBC是等腰直角三角形,求出OB即可解決問題.【詳解】連接OB,OC.∵∠A=180°-∠ABC-∠ACB=180°-65°-70°=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的長為=π,故選A.【點睛】本題考查圓周角定理,弧長公式,等腰直角三角形的性質的等知識,解題的關鍵是熟練掌握基本知識2、C【解析】根據一元二次方程的一般形式進行解答即可.【詳解】5x2=6x﹣8化成一元二次方程一般形式是5x2﹣6x+8=0,它的二次項系數是5,一次項系數是﹣6,常數項是8,故選C.【點睛】本題考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數且a≠0)特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.在一般形式中ax2叫二次項,bx叫一次項,c是常數項.其中a,b,c分別叫二次項系數,一次項系數,常數項.3、B【分析】連接EB,根據已知條件得到E′,E,B在同一條直線上,且E′B⊥AC,過F做FH⊥BE于H,則四邊形BOFH是正方形,求得BH=FH=OB,設AO=OB=r,解直角三角形即可得到結論.【詳解】解:連接EB,∵D′E′=DE=BC=1.6∴E′,E,B在同一條直線上,且E′B⊥AC,過F做FH⊥BE于H,則四邊形BOFH是正方形,∴BH=FH=OB,設AO=OB=r,∴FH=BH=r,∵∠OEB=37°,∴tan37°=,∴BE=,∴EH=BD-BH=,∵EE′=DD′=49,∴E′H=49+,∵∠FE′H=42°,∴tan42°=,解得r≈63,∴AC=2×63+1.6=127.6米,故選:B.【點睛】本題考查了解直角三角形——仰角與俯角問題,正方形的判定和性質,正確的作出輔助線是解題的關鍵.4、B【分析】連接BO,由可得,則,由圓周角定理,得,即可得到答案.【詳解】解:如圖,連接BO,則∵,∴,∴,∵,∴;故選:B.【點睛】本題考查了垂徑定理,以及圓周角定理,解題的關鍵是正確作出輔助線,得到.5、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整體代入的方法計算2a-4b的值即可.【詳解】將x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故選:A.【點睛】本題考查了一元二次方程的解的定義.一元二次方程的解就是能夠使方程左右兩邊相等的未知數的值.6、C【分析】相似三角形的周長比等于對應的中線的比.【詳解】∵△ABC∽△A'B'C',AD和A'D'是它們的對應中線,AD=10,A'D'=6,∴△ABC與△A'B'C'的周長比=AD:A′D′=10:6=5:1.故選C.【點睛】本題考查相似三角形的性質,解題的關鍵是記住相似三角形的性質,靈活運用所學知識解決問題.7、D【分析】事先能肯定它一定會發生的事件稱為必然事件,事先能肯定它一定不會發生的事件稱為不可能事件,必然事件和不可能事件都是確定的.【詳解】解:A、日行千里是隨機事件,故本選項錯誤;B、守株待兔是隨機事件,故本選項錯誤;C、水漲船高是必然事件,故本選項錯誤;D、水中撈月是不可能事件,故本選項正確.故選:D.【點睛】此題考查是不可能事件的判斷,掌握不可能事件的定義是解決此題的關鍵.8、C【分析】根據軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內,一個圖形經過中心對稱能與原來的圖形重合,這個圖形叫做叫做中心對稱圖形.一個圖形的一部分,以某條直線為對稱軸,經過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】A.既是中心對稱圖形,也是軸對稱圖形,故不符合題意;B.既是中心對稱圖形,也是軸對稱圖形,故不符合題意;C.是中心對稱圖形,但不是軸對稱圖形,故符合題意;D.不是中心對稱圖形,是軸對稱圖形,故不符合題意;故選C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關鍵.9、B【解析】解:A.隨意翻到一本書的某頁,這頁的頁碼是奇數,是隨機事件;B.通常溫度降到0℃以下,純凈的水結冰,是必然事件;C.地面發射一枚導彈,未擊中空中目標,是隨機事件;D.測量某天的最低氣溫,結果為-150℃,是不可能事件.故選B.10、B【分析】直接利用關于原點對稱點的縱橫坐標均互為相反數分析得出答案.【詳解】點P(2a+1,a﹣1)關于原點對稱的點(﹣2a﹣1,﹣a+1)在第一象限,則,解得:a<﹣.故選:B.【點睛】此題主要考查了關于原點對稱點的性質以及不等式組的解法,正確解不等式是解題關鍵.11、B【分析】由已知條件可得,可得出,可求出AC的長.【詳解】解:由題意得:∠B=∠DAC,∠ACB=∠ACD,所以,根據“相似三角形對應邊成比例”,得,又AD是中線,BC=8,得DC=4,代入可得AC=,故選B.【點睛】本題主要考查相似三角形的判定與性質.靈活運用相似的性質可得出解答.12、C【分析】先根據正方形的性質和旋轉的性質得到∠AOF的度數,OA=OF,再根據等腰三角形的性質即可求得∠OFA的度數【詳解】∵正方形OABC繞著點O逆時針旋轉40°得到正方形ODEF,
∴∠AOF=90°+40°=130°,OA=OF,
∴∠OFA=(180°-130°)÷2=25°.
故選C.二、填空題(每題4分,共24分)13、【分析】將正六邊形ABCDEF繞原點O逆時針旋轉2019次時,點A所在的位置就是原D點所在的位置.【詳解】2019×60°÷360°=336…3,即與正六邊形ABCDEF繞原點O逆時針旋轉3次時點A的坐標是一樣的.當點A按逆時針旋轉180°時,與原D點重合.連接OD,過點D作DH⊥x軸,垂足為H;由已知ED=1,∠DOE=60°(正六邊形的性質),∴△OED是等邊三角形,∴OD=DE=OE=1.∵DH⊥OE,∴∠ODH=30°,OH=HE=2,HD=.∵D在第四象限,∴D,即旋轉2019后點A的坐標是.故答案為.【點睛】本題考查了正多邊形和圓、旋轉變換的性質,掌握正多邊形的性質、旋轉變換的性質是解題的關鍵.14、1【解析】解:∵直線y=kx與雙曲線y=(x>0)交于點A(1,a),∴a=1,k=1.故答案為1.15、1【解析】連接OA,設CD為x,由于C點為弧AB的中點,CD⊥AB,根據垂徑定理的推理和垂徑定理得到CD必過圓心0,即點O、D、C共線,AD=BD=AB=40,在Rt△OAD中,利用勾股定理得(50-x)2+402=502,然后解方程即可.【詳解】解:連接OA、如圖,設⊙O的半徑為R,
∵CD為水深,即C點為弧AB的中點,CD⊥AB,∴CD必過圓心O,即點O、D、C共線,AD=BD=AB=40,
在Rt△OAD中,OA=50,OD=50-x,AD=40,
∵OD2+AD2=OA2,
∴(50-x)2+402=502,解得x=1,
即水深CD約為為1.
故答案為;1【點睛】本題考查了垂徑定理的應用:從實際問題中抽象出幾何圖形,然后垂徑定理和勾股定理相結合,構造直角三角形,可解決計算弦長、半徑、弦心距等問題.16、1.【分析】設正方形城池的邊長為步,根據比例性質求.【詳解】解:設正方形城池的邊長為步,即正方形城池的邊長為1步.故答案為1.【點睛】本題考查了相似三角形的應用:構建三角形相似,利用相似比計算對應的線段長.17、x1=2,x2=1【分析】根據拋物線y=x2﹣1x+m與直線y=kx﹣13(k≠0)交于點(2,﹣9),可以求得m和k的值,然后代入題目中的方程,即可解答本題.【詳解】解:∵拋物線y=x2﹣1x+m與直線y=kx﹣13(k≠0)交于點(2,﹣9),∴﹣9=22﹣1×2+m,﹣9=2k﹣13,解得,m=﹣5,k=2,∴拋物線為y=x2﹣1x﹣5,直線y=2x﹣13,∴所求方程為x2﹣1x﹣5=2(x﹣1)﹣11,解得,x1=2,x2=1,故答案為:x1=2,x2=1.【點睛】本題主要考查的是二次函數與一次函數的交點問題,交點既滿足二次函數也滿足一次函數,帶入即可求解.18、-6【解析】根據反比例函數k的幾何性質,矩形的性質即可解題.【詳解】解:由反比例函數k的幾何性質可知,k表示反比例圖像上的點與坐標軸圍成的矩形的面積,∵△ABO的面積為3,由矩形的性質可知,點A與坐標軸圍成的矩形的面積=6,∵圖像過第二象限,∴k=-6.【點睛】本題考查了反比例函數k的幾何性質,屬于簡單題,熟悉性質內容是解題關鍵.三、解答題(共78分)19、(1)2;(2)【分析】(1)利用絕對值的意義、特殊角的三角函數值和二次根式的性質進行計算,再合并即可;
(2)先根據分式的除法將所求式子進行變形,再將已知式子的值代入即可得出結果.【詳解】解:(1)原式=﹣1+2×﹣2+()2=﹣1+﹣2+3=2;(2)∵,∴.【點睛】本題考查了特殊角的三角函數值、二次根式的混合運算以及比例的性質和分式的除法法則,掌握基本運算法則,能靈活運用比例的性質進行變形是解此題的關鍵.20、(1)為y=﹣10x+2;(2)3元時每天獲取的利潤最大利潤是4元;(3)45≤x≤1.【分析】(1)根據每上漲1元,銷量下降10件即可求解;(2)根據每天獲得利潤等于單件利潤乘以銷售量列出二次函數,再根據二次函數的性質即可求解;(3)根據每天剩余利潤不低于3600元和二次函數圖象即可求解.【詳解】解:(1)根據題意,得y=250﹣10(x﹣45)=﹣10x+2.答:每天的銷售量y(件)與銷售單價x(元)之間的函數關系式為y=﹣10x+2.(2)銷售量不低于240件,得﹣10x+2≥240解得x≤3,∴30<x≤3.設銷售單價為x元時,每天獲取的利潤是w元,根據題意,得w=(x﹣30)(﹣10x+2)=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000∵﹣10<0,所以x<50時,w隨x的增大而增大,所以當x=3時,w有最大值,w的最大值為﹣10(3﹣50)2+4000=4.答:銷售單價為3元時,每天獲取的利潤最大,最大利潤是4元.(3)根據題意,得w﹣150=﹣10x2+1000x﹣21000﹣150=3600即﹣10(x﹣50)2=﹣250解得x1=1,x2=45,根據圖象得,當45≤x≤1時,捐款后每天剩余利潤不低于3600元.【點睛】本題考查了二次函數的應用,利用二次函數的性質求最大值,正確求出二次函數關系式,理解二次函數的性質是解題的關鍵.21、(1)證明見解析;(2)BM=,理由見解析.【分析】(1)利用圓周角定理得到∠ADB=90°,然后就利用等角的余角相等得到結論;(2)如圖,連接OD,DM,先計算出BD=8,OA=5,再證明Rt△CBD∽Rt△BAD,利用相似比得到BC=,取BC的中點M,連接DM、OD,如圖,證明∠2=∠4得到∠ODM=90°,根據切線的判定定理可確定DM為⊙O的切線,然后計算BM的長即可.【詳解】(1)∵AB為⊙O直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如圖,連接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中點M,連接DM、OD,如圖,∵DM為Rt△BCD斜邊BC的中線,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM為⊙O的切線,此時BM=BC=.【點睛】本題考查了切線的判定定理:經過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了圓周角定理,掌握切線的判定定理及圓周角定理是關鍵.22、(1)20%;(2)(3)商場為了每天盈利最大,每千克應降價7元【分析】(1)設每次漲價的百分率為x,根據題意列出方程即可;(2)根據題意列出函數表達式即可;(3)根據等量關系列出函數解析式,然后根據解析式的性質,求出最值即可.【詳解】解:(1)設每次漲價的百分率為x,根據題意得:25(1+x)2=36,解得:(不合題意舍去)答:每次漲價的百分率20%;(2)設,把,代入得,∴k=30,∴y與m的函數解析式為;(3)依題有,∵拋物線的開口向下,對稱軸為,∴當時,w隨m的增大而增大,又,∴當時,每天盈利最大,答:商場為了每天盈利最大,每千克應降價7元.【點睛】本題主要考查了一元二次方程的應用,二次函數的應用,根據題意得出等量關系是解題關鍵.23、(1),頂點坐標為;(2)8;(3)①;②.【分析】(1)將點C代入表達式即可求出解析式,將表達式轉換為頂點式即可寫出頂點坐標;(2)根據題目分析可知,當點P位于拋物線頂點時,△ABP面積最大,根據解析式求出A、B坐標,從而得到AB長,再利用三角形面積公式計算面積即可;(3)①分三種情況:0<m≤1、1<
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國企監控施工合同協議
- 處理廢物運輸合同協議
- 基金代理銷售合同協議
- 回建地買賣合同協議
- 地板定制采購合同協議
- 多人入股飯店合同協議
- 墓地購買合同協議樣本電子版
- 地產承包出租合同協議
- 墓地物業服務合同協議
- 坑地租賃合同協議
- (廣東二模)2025年廣東省高三高考模擬測試(二)歷史試卷(含答案)
- GB/T 10810.1-2025眼鏡鏡片第1部分:單焦和多焦
- 2025年鄭州鐵路職業技術學院單招職業適應性測試題庫必考題
- 做最勇敢的自己
- 殘聯2024年普法依法治理工作計劃要點
- (新版)六西格瑪綠帶認證考試復習題庫(含答案)
- 義務教育質量監測德育學科模擬試題(四年級)復習測試卷含答案
- DL∕T 1084-2021 風力發電場噪聲限值及測量方法
- DL∕T 516-2017 電力調度自動化運行管理規程
- 九年級物理學情分析及教學對策
- 分紅保險精算規定中國保監會
評論
0/150
提交評論