2024屆廣東省汕尾市高三數學試題下學期期末教學質量檢測試題_第1頁
2024屆廣東省汕尾市高三數學試題下學期期末教學質量檢測試題_第2頁
2024屆廣東省汕尾市高三數學試題下學期期末教學質量檢測試題_第3頁
2024屆廣東省汕尾市高三數學試題下學期期末教學質量檢測試題_第4頁
2024屆廣東省汕尾市高三數學試題下學期期末教學質量檢測試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省汕尾市高三數學試題下學期期末教學質量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的圖象向左平移個單位后得到函數的圖象,則的最小值為()A. B. C. D.2.已知,則()A. B. C. D.3.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.44.的內角的對邊分別為,若,則內角()A. B. C. D.5.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20176.執行如圖所示的程序框圖,則輸出的結果為()A. B. C. D.7.已知向量,且,則等于()A.4 B.3 C.2 D.18.設,命題“存在,使方程有實根”的否定是()A.任意,使方程無實根B.任意,使方程有實根C.存在,使方程無實根D.存在,使方程有實根9.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.10.已知是定義是上的奇函數,滿足,當時,,則函數在區間上的零點個數是()A.3 B.5 C.7 D.911.已知函數,的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.12.直線x-3y+3=0經過橢圓x2a2+y2bA.3-1 B.3-12 C.二、填空題:本題共4小題,每小題5分,共20分。13.若奇函數滿足,為R上的單調函數,對任意實數都有,當時,,則________.14.若將函數的圖象沿軸向右平移個單位后所得的圖象與的圖象關于軸對稱,則的最小值為________________.15.已知a,b均為正數,且,的最小值為________.16.已知復數z是純虛數,則實數a=_____,|z|=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列滿足,.(l)求等差數列的通項公式;(2)設,求數列的前項和.18.(12分)設數列的前n項和滿足,,,(1)證明:數列是等差數列,并求其通項公式﹔(2)設,求證:.19.(12分)記無窮數列的前項中最大值為,最小值為,令,則稱是“極差數列”.(1)若,求的前項和;(2)證明:的“極差數列”仍是;(3)求證:若數列是等差數列,則數列也是等差數列.20.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.21.(12分)已知,均為正項數列,其前項和分別為,,且,,,當,時,,.(1)求數列,的通項公式;(2)設,求數列的前項和.22.(10分)設橢圓的左右焦點分別為,離心率,右準線為,是上的兩個動點,.(Ⅰ)若,求的值;(Ⅱ)證明:當取最小值時,與共線.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

首先求得平移后的函數,再根據求的最小值.【題目詳解】根據題意,的圖象向左平移個單位后,所得圖象對應的函數,所以,所以.又,所以的最小值為.故選:A【題目點撥】本題考查三角函數的圖象變換,誘導公式,意在考查平移變換,屬于基礎題型.2、D【解題分析】

根據指數函數的單調性,即當底數大于1時單調遞增,當底數大于零小于1時單調遞減,對選項逐一驗證即可得到正確答案.【題目詳解】因為,所以,所以是減函數,又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【題目點撥】這個題目考查的是應用不等式的性質和指對函數的單調性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質得到大小關系,有時可以代入一些特殊的數據得到具體值,進而得到大小關系.3、D【解題分析】

利用導數的幾何意義得直線的斜率,列出a的方程即可求解【題目詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【題目點撥】本題考查導數的幾何意義,考查運算求解能力,是基礎題4、C【解題分析】

由正弦定理化邊為角,由三角函數恒等變換可得.【題目詳解】∵,由正弦定理可得,∴,三角形中,∴,∴.故選:C.【題目點撥】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關鍵.5、D【解題分析】

依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環.輸出1.選D.6、D【解題分析】循環依次為直至結束循環,輸出,選D.點睛:算法與流程圖的考查,側重于對流程圖循環結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環結構、偽代碼,其次要重視循環起點條件、循環次數、循環終止條件,更要通過循環規律,明確流程圖研究的數學問題,是求和還是求項.7、D【解題分析】

由已知結合向量垂直的坐標表示即可求解.【題目詳解】因為,且,,則.故選:.【題目點撥】本題主要考查了向量垂直的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎題.8、A【解題分析】

只需將“存在”改成“任意”,有實根改成無實根即可.【題目詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實根”的否定是“任意,使方程無實根”.故選:A【題目點撥】本題考查含有一個量詞的命題的否定,此類問題要注意在兩個方面作出變化:1.量詞,2.結論,是一道基礎題.9、C【解題分析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.10、D【解題分析】

根據是定義是上的奇函數,滿足,可得函數的周期為3,再由奇函數的性質結合已知可得,利用周期性可得函數在區間上的零點個數.【題目詳解】∵是定義是上的奇函數,滿足,,可得,

函數的周期為3,

∵當時,,

令,則,解得或1,

又∵函數是定義域為的奇函數,

∴在區間上,有.

由,取,得,得,

∴.

又∵函數是周期為3的周期函數,

∴方程=0在區間上的解有共9個,

故選D.【題目點撥】本題考查根的存在性及根的個數判斷,考查抽象函數周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.11、D【解題分析】

由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數的解析式,又因為當時,,由此即可得到本題答案.【題目詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數的最小正周期,則,所以,當時,,所以是函數的一條對稱軸,故選:D【題目點撥】本題主要考查利用和差公式恒等變形,以及考查三角函數的周期性和對稱性.12、A【解題分析】

由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為再由FC=2CA,求得A3【題目詳解】由題意,直線x-3y+3=0經過橢圓的左焦點F,令所以c=3,即橢圓的左焦點為F(-3,0)直線交y軸于C(0,1),所以,OF=因為FC=2CA,所以FA=3又由點A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【題目點撥】本題考查了橢圓的幾何性質——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據一個條件得到關于a,b,c的齊次式,轉化為a,c的齊次式,然后轉化為關于e的方程,即可得二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

根據可得,函數是以為周期的函數,令,可求,從而可得,代入解析式即可求解.【題目詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數是以為周期的函數,,又函數為奇函數,所以.故答案為:【題目點撥】本題主要考查了換元法求函數解析式、函數的奇偶性、周期性的應用,屬于中檔題.14、【解題分析】

由題意利用函數的圖象變換規律,三角函數的圖像的對稱性,求得的最小值.【題目詳解】解:將函數的圖象沿軸向右平移個單位長度,可得的圖象.根據圖象與的圖象關于軸對稱,可得,,,即時,的最小值為.故答案為:.【題目點撥】本題主要考查函數的圖象變換規律,正弦函數圖像的對稱性,屬于基礎題.15、【解題分析】

本題首先可以根據將化簡為,然后根據基本不等式即可求出最小值.【題目詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【題目點撥】本題考查根據基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉化思想,是中檔題.16、11【解題分析】

根據復數運算法則計算復數z,根據復數的概念和模長公式計算得解.【題目詳解】復數z,∵復數z是純虛數,∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【題目點撥】此題考查復數的概念和模長計算,根據復數是純虛數建立方程求解,計算模長,關鍵在于熟練掌握復數的運算法則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】試題分析:(1)設等差數列滿的首項為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過裂項求和可求得。試題解析:(1)設等差數列的公差為,則由題意可得,解得.所以.(2)因為,所以.所以.18、(1)證明見解析,;(2)證明見解析【解題分析】

(1)由,作差得到,進一步得到,再作差即可得到,從而使問題得到解決;(2),求和即可.【題目詳解】(1),,兩式相減:①用換,得②②—①,得,即,所以數列是等差數列,又,∴,,公差,所以.(II).【題目點撥】本題考查由與的關系求通項以及裂項相消法求數列的和,考查學生的計算能力,是一道容易題.19、(1)(2)證明見解析(3)證明見解析【解題分析】

(1)由是遞增數列,得,由此能求出的前項和.(2)推導出,,由此能證明的“極差數列”仍是.(3)證當數列是等差數列時,設其公差為,,是一個單調遞增數列,從而,,由,,,分類討論,能證明若數列是等差數列,則數列也是等差數列.【題目詳解】(1)解:∵無窮數列的前項中最大值為,最小值為,,,是遞增數列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數列”仍是(3)證明:當數列是等差數列時,設其公差為,,根據,的定義,得:,,且兩個不等式中至少有一個取等號,當時,必有,∴,∴是一個單調遞增數列,∴,,∴,∴,∴是等差數列,當時,則必有,∴,∴是一個單調遞減數列,∴,,∴,∴.∴是等差數列,當時,,∵,中必有一個為0,根據上式,一個為0,為一個必為0,∴,,∴數列是常數數列,則數列是等差數列.綜上,若數列是等差數列,則數列也是等差數列.【題目點撥】本小題主要考查新定義數列的理解和運用,考查等差數列的證明,考查數列的單調性,考查化歸與轉化的數學思想方法,屬于難題.20、(1)見解析;(2).【解題分析】試題分析:(1)連交于可得是中點,再根據面可得進而根據中位線定理可得結果;(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系,求出面的一個法向量,用表示面的一個法向量,由可得結果.試題解析:(1)證明:連交于,連是矩形,是中點.又面,且是面與面的交線,是的中點.(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系(如圖),則各點坐標為.設存在滿足要求,且,則由得:,面的一個法向量為,面的一個法向量為,由,得,解得,故存在,使二面角為直角,此時.21、(1),(2)【解題分析】

(1),所,兩式相減,即可得到數列遞推關系求解通項公式,由,整理得,得到,即可求解通項公式;(2)由(1)可知,,即可求得數列的前項和.【題目詳解】(1)因為,所,兩式相減,整理得,當時,,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論