2024屆河南省豫西名校數學高三第一學期期末復習檢測模擬試題含解析_第1頁
2024屆河南省豫西名校數學高三第一學期期末復習檢測模擬試題含解析_第2頁
2024屆河南省豫西名校數學高三第一學期期末復習檢測模擬試題含解析_第3頁
2024屆河南省豫西名校數學高三第一學期期末復習檢測模擬試題含解析_第4頁
2024屆河南省豫西名校數學高三第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆河南省豫西名校數學高三第一學期期末復習檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是定義在上的奇函數,當時,,則()A. B.2 C.3 D.2.已知實數滿足則的最大值為()A.2 B. C.1 D.03.設點,,不共線,則“”是“”()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件4.若復數(為虛數單位),則()A. B. C. D.5.《普通高中數學課程標準(2017版)》提出了數學學科的六大核心素養.為了比較甲、乙兩名高二學生的數學核心素養水平,現以六大素養為指標對二人進行了測驗,根據測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優),則下面敘述正確的是()A.甲的數據分析素養高于乙B.甲的數學建模素養優于數學抽象素養C.乙的六大素養中邏輯推理最差D.乙的六大素養整體平均水平優于甲6.已知函數的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.7.已知,,,則a,b,c的大小關系為()A. B. C. D.8.復數的共軛復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知集合A,B=,則A∩B=A. B. C. D.10.已知,則()A. B. C. D.211.已知隨機變量服從正態分布,,()A. B. C. D.12.函數,,的部分圖象如圖所示,則函數表達式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數為__________(用具體數據作答).14.已知函數,,若函數有3個不同的零點x1,x2,x3(x1<x2<x3),則的取值范圍是_________.15.點P是△ABC所在平面內一點且在△ABC內任取一點,則此點取自△PBC內的概率是____16.在中,已知是的中點,且,點滿足,則的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某芯片公司對今年新開發的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統計數據分為五個小組(所調查的芯片得分均在內),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數的平均數(同一組中的每個數據可用該組區間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續測試,現手機公司測試部門預算的測試經費為10萬元,試問預算經費是否足夠測試完這100顆芯片?請說明理由.18.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.19.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.20.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側棱上一點,已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.21.(12分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.22.(10分)某校共有學生2000人,其中男生900人,女生1100人,為了調查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據收集100人的樣本數據,得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數據中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.879

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由奇函數定義求出和.【詳解】因為是定義在上的奇函數,.又當時,,.故選:A.【點睛】本題考查函數的奇偶性,掌握奇函數的定義是解題關鍵.2、B【解析】

作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經過點時,其截距最大,此時最大得,當時,故選:B【點睛】考查線性規劃,是基礎題.3、C【解析】

利用向量垂直的表示、向量數量積的運算,結合充分必要條件的定義判斷即可.【詳解】由于點,,不共線,則“”;故“”是“”的充分必要條件.故選:C.【點睛】本小題主要考查充分、必要條件的判斷,考查向量垂直的表示,考查向量數量積的運算,屬于基礎題.4、B【解析】

根據復數的除法法則計算,由共軛復數的概念寫出.【詳解】,,故選:B【點睛】本題主要考查了復數的除法計算,共軛復數的概念,屬于容易題.5、D【解析】

根據雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數據分析分,乙的數據分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養分,乙的建模素養分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養整體平均水平優于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數據處理,屬于基礎題.6、D【解析】

運用輔助角公式,化簡函數的解析式,由對稱軸的方程,求得的值,得出函數的解析式,集合正弦函數的最值,即可求解,得到答案.【詳解】由題意,函數為輔助角,由于函數的對稱軸的方程為,且,即,解得,所以,又由,所以函數必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.【點睛】本題主要考查了正弦函數的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數的解析式,合理利用正弦函數的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.7、D【解析】

與中間值1比較,可用換底公式化為同底數對數,再比較大小.【詳解】,,又,∴,即,∴.故選:D.【點睛】本題考查冪和對數的大小比較,解題時能化為同底的化為同底數冪比較,或化為同底數對數比較,若是不同類型的數,可借助中間值如0,1等比較.8、A【解析】

試題分析:由題意可得:.共軛復數為,故選A.考點:1.復數的除法運算;2.以及復平面上的點與復數的關系9、A【解析】

先解A、B集合,再取交集。【詳解】,所以B集合與A集合的交集為,故選A【點睛】一般地,把不等式組放在數軸中得出解集。10、B【解析】

結合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得..故選:B【點睛】本小題主要考查利用同角三角函數的基本關系式化簡求值,考查二倍角公式,屬于中檔題.11、B【解析】

利用正態分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態分布密度曲線的對稱性求概率,屬于基礎題.12、A【解析】

根據圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據圖像求正弦型函數的解析式,三角函數誘導公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用二項展開式的通項公式可求的系數.【詳解】的展開式的通項公式為,令,故,故的系數為.故答案為:.【點睛】本題考查二項展開式中指定項的系數,注意利用通項公式來計算,本題屬于容易題.14、【解析】

先根據題意,求出的解得或,然后求出f(x)的導函數,求其單調性以及最值,在根據題意求出函數有3個不同的零點x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數有3個不同的零點,即+m=0有兩個不同的解,解之得即或因為的導函數,令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數有3個不同的零點,(1)有兩個不同的解,此時有一個解;(2)有兩個不同的解,此時有一個解當有兩個不同的解,此時有一個解,此時,不符合題意;或是不符合題意;所以只能是解得,此時=-m,此時有兩個不同的解,此時有一個解此時,不符合題意;或是不符合題意;所以只能是解得,此時=,綜上:的取值范圍是故答案為【點睛】本題主要考查了函數與導函數的綜合,考查到了函數的零點,導函數的應用,以及數形結合的思想、分類討論的思想,屬于綜合性極強的題目,屬于難題.15、【解析】

設是中點,根據已知條件判斷出三點共線且是線段靠近的三等分點,由此求得,結合幾何概型求得點取自三角形的概率.【詳解】設是中點,因為,所以,所以三點共線且點是線段靠近的三等分點,故,所以此點取自內的概率是.故答案為:【點睛】本小題主要考查三點共線的向量表示,考查幾何概型概率計算,屬于基礎題.16、【解析】

由中點公式的向量形式可得,即有,設,有,再分別討論三點共線和不共線時的情況,找到的關系,即可根據函數知識求出范圍.【詳解】是的中點,∴,即設,于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據余弦定理可得,解得,由,解得.綜上,故答案為:.【點睛】本題主要考查學中點公式的向量形式和數量積的定義的應用,以及余弦定理的應用,涉及到函數思想和分類討論思想的應用,解題關鍵是建立函數關系式,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)預算經費不夠測試完這100顆芯片,理由見解析【解析】

(1)先求出,再利用頻率分布直方圖的平均數公式求這100顆芯片評測分數的平均數;(2)先求出每顆芯片的測試費用的數學期望,再比較得解.【詳解】(1)依題意,,故.又因為.所以,所求平均數為(萬分)(2)由題意可知,手機公司抽取一顆芯片置于一個工程機中進行檢測評分達到11萬分的概率.設每顆芯片的測試費用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測試費用的數學期望為(元),因為,所以顯然預算經費不夠測試完這100顆芯片.【點睛】本題主要考查頻率分布直方圖的平均數的計算,考查離散型隨機變量的數學期望的計算,意在考查學生對這些知識的理解掌握水平.18、(1)見證明;(2)【解析】

(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算.19、(1)見解析(2)見解析【解析】

(1)取的中點D,連結,.根據線面平行的判定定理即得;(2)先證,,和都是平面內的直線且交于點,由(1)得,再結合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結,.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,,.又,平面,平面,平面.【點睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.20、(Ⅰ)證明見解析;(Ⅱ).【解析】

(Ⅰ)先證明

,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據題意以為軸、軸、軸建立空間直角坐標系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標系,則,,,設平面的法向量為,則令,則,是平面的一個法向量設平面的一個法向量為令,則是平面的一個法向量=又二面角為鈍二面角,其余弦值為.【點睛】本題考查線面、面面垂直的判定定理與性質定理,考查向量法求二面角的余弦值,考查直觀想象能力與運算求解能力,屬于中檔題.21、(1)(2)【解析】

(1)利用余弦定理可求,從而得到的值.(2)利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論