




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省(臨汾市堯都區興國實驗校2024學年中考數學最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.若關于的方程的兩根互為倒數,則的值為()A. B.1 C.-1 D.02.如圖,直線m⊥n,在某平面直角坐標系中,x軸∥m,y軸∥n,點A的坐標為(-4,2),點B的坐標為(2,-4),則坐標原點為()A.O1 B.O2 C.O3 D.O43.在1-7月份,某種水果的每斤進價與出售價的信息如圖所示,則出售該種水果每斤利潤最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份4.統計學校排球隊員的年齡,發現有12、13、14、15等四種年齡,統計結果如下表:年齡(歲)12131415人數(個)2468根據表中信息可以判斷該排球隊員年齡的平均數、眾數、中位數分別為()A.13、15、14 B.14、15、14 C.13.5、15、14 D.15、15、155.如圖所示,a∥b,直線a與直線b之間的距離是()A.線段PA的長度 B.線段PB的長度C.線段PC的長度 D.線段CD的長度6.已知拋物線y=ax2+bx+c的圖象如圖所示,頂點為(4,6),則下列說法錯誤的是()A.b2>4ac B.ax2+bx+c≤6C.若點(2,m)(5,n)在拋物線上,則m>n D.8a+b=07.四根長度分別為3,4,6,x(x為正整數)的木棒,從中任取三根.首尾順次相接都能組成一個三角形,則().A.組成的三角形中周長最小為9 B.組成的三角形中周長最小為10C.組成的三角形中周長最大為19 D.組成的三角形中周長最大為168.下列說法正確的是()A.﹣3是相反數 B.3與﹣3互為相反數C.3與互為相反數 D.3與﹣互為相反數9.如圖,A、B、C三點在正方形網格線的交點處,若將△ABC繞著點A逆時針旋轉得到△AC′B′,則tanB′的值為()A. B. C. D.10.不等式組的正整數解的個數是()A.5 B.4 C.3 D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.釣魚島是中國的固有領土,位于中國東海,面積約4400000平方米,數據4400000用科學記數法表示為______.12.如圖,某商店營業大廳自動扶梯AB的傾斜角為31°,AB的長為12米,則大廳兩層之間的高度為____米.(結果保留兩個有效數字)(參考數據;sin31°=0.515,cos31°=0.857,tan31°=0.601)13.如圖,直線m∥n,以直線m上的點A為圓心,適當長為半徑畫弧,分別交直線m,n于點B、C,連接AC、BC,若∠1=30°,則∠2=_____.14.如圖,點P(3a,a)是反比例函(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數的表達式為______.15.如圖,在同一平面內,將邊長相等的正三角形和正六邊形的一條邊重合并疊在一起,則∠1的度數為_____.16.下面是用棋子擺成的“上”字:如果按照以上規律繼續擺下去,那么通過觀察,可以發現:第n個“上”字需用_____枚棋子.三、解答題(共8題,共72分)17.(8分)平面直角坐標系xOy中,橫坐標為a的點A在反比例函數y1═(x>0)的圖象上,點A′與點A關于點O對稱,一次函數y2=mx+n的圖象經過點A′.(1)設a=2,點B(4,2)在函數y1、y2的圖象上.①分別求函數y1、y2的表達式;②直接寫出使y1>y2>0成立的x的范圍;(2)如圖①,設函數y1、y2的圖象相交于點B,點B的橫坐標為3a,△AA'B的面積為16,求k的值;(3)設m=,如圖②,過點A作AD⊥x軸,與函數y2的圖象相交于點D,以AD為一邊向右側作正方形ADEF,試說明函數y2的圖象與線段EF的交點P一定在函數y1的圖象上.18.(8分)如圖,點A、B在⊙O上,點O是⊙O的圓心,請你只用無刻度的直尺,分別畫出圖①和圖②中∠A的余角.(1)圖①中,點C在⊙O上;(2)圖②中,點C在⊙O內;19.(8分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉過程中,半圓弧與直線CD只有一個交點時,設此交點與點C的距離為d,直接寫出d的取值范圍.20.(8分)求不等式組的整數解.21.(8分)畫出二次函數y=(x﹣1)2的圖象.22.(10分)如圖,某人站在樓頂觀測對面的筆直的旗桿AB,已知觀測點C到旗桿的距離CE=8m,測得旗桿的頂部A的仰角∠ECA=30°,旗桿底部B的俯角∠ECB=45°,求旗桿AB的髙.23.(12分)2018年江蘇省揚州市初中英語口語聽力考試即將舉行,某校認真復習,積極迎考,準備了A、B、C、D四份聽力材料,它們的難易程度分別是易、中、難、難;a,b是兩份口語材料,它們的難易程度分別是易、難.從四份聽力材料中,任選一份是難的聽力材料的概率是.用樹狀圖或列表法,列出分別從聽力、口語材料中隨機選一份組成一套完整的模擬試卷的所有情況,并求出兩份材料都是難的一套模擬試卷的概率.24.已知動點P以每秒2
cm的速度沿圖(1)的邊框按從B?C?D?E?F?A的路徑移動,相應的△ABP的面積S與時間t之間的關系如圖(2)中的圖象表示.若AB=6
cm,試回答下列問題:(1)圖(1)中的BC長是多少?(2)圖(2)中的a是多少?(3)圖(1)中的圖形面積是多少?(4)圖(2)中的b是多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
根據已知和根與系數的關系得出k2=1,求出k的值,再根據原方程有兩個實數根,即可求出符合題意的k的值.【題目詳解】解:設、是的兩根,由題意得:,由根與系數的關系得:,∴k2=1,解得k=1或?1,∵方程有兩個實數根,則,當k=1時,,∴k=1不合題意,故舍去,當k=?1時,,符合題意,∴k=?1,故答案為:?1.【題目點撥】本題考查的是一元二次方程根與系數的關系及相反數的定義,熟知根與系數的關系是解答此題的關鍵.2、A【解題分析】試題分析:因為A點坐標為(-4,2),所以,原點在點A的右邊,也在點A的下邊2個單位處,從點B來看,B(2,-4),所以,原點在點B的左邊,且在點B的上邊4個單位處.如下圖,O1符合.考點:平面直角坐標系.3、B【解題分析】
解:各月每斤利潤:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利潤最大,故選B.4、B【解題分析】
根據加權平均數、眾數、中位數的計算方法求解即可.【題目詳解】,15出現了8次,出現的次數最多,故眾數是15,從小到大排列后,排在10、11兩個位置的數是14,14,故中位數是14.故選B.【題目點撥】本題考查了平均數、眾數與中位數的意義.數據x1、x2、……、xn的加權平均數:(其中w1、w2、……、wn分別為x1、x2、……、xn的權數).一組數據中出現次數最多的數據叫做眾數.中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(或最中間兩個數的平均數),叫做這組數據的中位數.5、A【解題分析】分析:從一條平行線上的任意一點到另一條直線作垂線,垂線段的長度叫兩條平行線之間的距離,由此可得出答案.詳解:∵a∥b,AP⊥BC∴兩平行直線a、b之間的距離是AP的長度∴根據平行線間的距離相等∴直線a與直線b之間的距離AP的長度故選A.點睛:本題考查了平行線之間的距離,屬于基礎題,關鍵是掌握平行線之間距離的定義.6、C【解題分析】觀察可得,拋物線與x軸有兩個交點,可得,即,選項A正確;拋物線開口向下且頂點為(4,6)可得拋物線的最大值為6,即,選項B正確;由題意可知拋物線的對稱軸為x=4,因為4-2=2,5-4=1,且1<2,所以可得m<n,選項C錯誤;因對稱軸,即可得8a+b=0,選項D正確,故選C.點睛:本題主要考查了二次函數y=ax2+bx+c圖象與系數的關系,解決本題的關鍵是從圖象中獲取信息,利用數形結合思想解決問題,本題難度適中.7、D【解題分析】
首先寫出所有的組合情況,再進一步根據三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【題目詳解】解:其中的任意三根的組合有3、4、1;3、4、x;3、1、x;4、1、x共四種情況,由題意:從中任取三根,首尾順次相接都能組成一個三角形,可得3<x<7,即x=4或5或1.①當三邊為3、4、1時,其周長為3+4+1=13;②當x=4時,周長最小為3+4+4=11,周長最大為4+1+4=14;③當x=5時,周長最小為3+4+5=12,周長最大為4+1+5=15;④若x=1時,周長最小為3+4+1=13,周長最大為4+1+1=11;綜上所述,三角形周長最小為11,最大為11,故選:D.【題目點撥】本題考查的是三角形三邊關系,利用了分類討論的思想.掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊是解答本題的關鍵.8、B【解題分析】
符號不同,絕對值相等的兩個數互為相反數,可據此來判斷各選項是否正確.【題目詳解】A、3和-3互為相反數,錯誤;B、3與-3互為相反數,正確;C、3與互為倒數,錯誤;D、3與-互為負倒數,錯誤;故選B.【題目點撥】此題考查相反數問題,正確理解相反數的定義是解答此題的關鍵.9、D【解題分析】
過C點作CD⊥AB,垂足為D,根據旋轉性質可知,∠B′=∠B,把求tanB′的問題,轉化為在Rt△BCD中求tanB.【題目詳解】過C點作CD⊥AB,垂足為D.根據旋轉性質可知,∠B′=∠B.在Rt△BCD中,tanB=,∴tanB′=tanB=.故選D.【題目點撥】本題考查了旋轉的性質,旋轉后對應角相等;三角函數的定義及三角函數值的求法.10、C【解題分析】
先解不等式組得到-1<x≤3,再找出此范圍內的正整數.【題目詳解】解不等式1-2x<3,得:x>-1,
解不等式≤2,得:x≤3,
則不等式組的解集為-1<x≤3,
所以不等式組的正整數解有1、2、3這3個,
故選C.【題目點撥】本題考查了一元一次不等式組的整數解,解題的關鍵是正確得出一元一次不等式組的解集.二、填空題(本大題共6個小題,每小題3分,共18分)11、
【解題分析】試題分析:將4400000用科學記數法表示為:4.4×1.故答案為4.4×1.考點:科學記數法—表示較大的數.12、6.2【解題分析】
根據題意和銳角三角函數可以求得BC的長,從而可以解答本題.【題目詳解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB?sin∠BAC=12×0.515≈6.2(米),答:大廳兩層之間的距離BC的長約為6.2米.故答案為:6.2.【題目點撥】本題考查解直角三角形的應用,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用銳角三角函數和數形結合的思想解答.13、75°【解題分析】試題解析:∵直線l1∥l2,∴故答案為14、y=【解題分析】設圓的半徑是r,根據圓的對稱性以及反比例函數的對稱性可得:πr2=10π解得:r=.∵點P(3a,a)是反比例函y=(k>0)與O的一個交點,∴3a2=k.∴a2==4.∴k=3×4=12,則反比例函數的解析式是:y=.故答案是:y=.點睛:本題主要考查了反比例函數圖象的對稱性,正確根據對稱性求得圓的半徑是解題的關鍵.15、60°【解題分析】
先根據多邊形的內角和公式求出正六邊形每個內角的度數,然后用正六邊形內角的度數減去正三角形內角的度數即可.【題目詳解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案為:60°.【題目點撥】題考查了多邊形的內角和公式,熟記多邊形的內角和公式為(n-2)×180°是解答本題的關鍵.16、4n+2【解題分析】∵第1個有:6=4×1+2;第2個有:10=4×2+2;第3個有:14=4×3+2;……∴第1個有:4n+2;故答案為4n+2三、解答題(共8題,共72分)17、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)證明見解析.【解題分析】分析:(1)由已知代入點坐標即可;(2)面積問題可以轉化為△AOB面積,用a、k表示面積問題可解;(3)設出點A、A′坐標,依次表示AD、AF及點P坐標.詳解:(1)①由已知,點B(4,2)在y1═(x>0)的圖象上∴k=8∴y1=∵a=2∴點A坐標為(2,4),A′坐標為(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,,解得,∴y2=x﹣2;②當y1>y2>0時,y1=圖象在y2=x﹣2圖象上方,且兩函數圖象在x軸上方,∴由圖象得:2<x<4;(2)分別過點A、B作AC⊥x軸于點C,BD⊥x軸于點D,連BO,∵O為AA′中點,S△AOB=S△AOA′=8∵點A、B在雙曲線上∴S△AOC=S△BOD∴S△AOB=S四邊形ACDB=8由已知點A、B坐標都表示為(a,)(3a,)∴,解得k=6;(3)由已知A(a,),則A′為(﹣a,﹣).把A′代入到y=,得:﹣,∴n=,∴A′B解析式為y=﹣.當x=a時,點D縱坐標為,∴AD=∵AD=AF,∴點F和點P橫坐標為,∴點P縱坐標為.∴點P在y1═(x>0)的圖象上.點睛:本題綜合考查反比例函數、一次函數圖象及其性質,解答過程中,涉及到了面積轉化方法、待定系數法和數形結合思想.18、圖形見解析【解題分析】試題分析:(1)根據同弧所對的圓周角相等和直徑所對的圓周角為直角畫圖即可;(2)延長AC交⊙O于點E,利用(1)的方法畫圖即可.試題解析:如圖①∠DBC就是所求的角;如圖②∠FBE就是所求的角19、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解題分析】
(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據相似三角形的性質可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據等邊三角形的性質可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【題目詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當點B′在點D右邊時,半圓交直線CD于點D、B′.∴當半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【題目點撥】本題考查了相似三角形的判定與性質、矩形的性質、等邊三角形的性質、勾股定理以及切線的性質,解題的關鍵是:(2)利用相似三角形的性質求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數形結合求出d的取值范圍.20、-1,-1,0,1,1【解題分析】分析:先求出不等式組的解集,然后求出整數解.詳解:,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式組的解集是﹣1≤x<3,∴不等式組的整數解是:﹣1、﹣1、0、1、1.點睛:本題考查了解一元一次不等式的整數解,解答本題的關鍵是明確解一元一次不等式組的方法.21、見解析【解題分析】
首先可得頂點坐標為(1,0),然后利用對稱性列表,再描點,連線,即可作出該函數的圖象.【題目詳解】列表得:x…﹣10123…y…41014…如圖:.【題目點撥】此題考查了二次函數的圖象.注意確定此二次函數的頂點坐標是關鍵.22、(8+8)m.【解題分析】
利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【題目詳解】在Rt△EBC中,有BE=EC×tan45°=8m,在Rt△AE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年重氮化合物項目發展計劃
- 國際美術節美術小組參與計劃
- 2025年全自動變焦照相機項目合作計劃書
- 六年級心理健康教育計劃的文化適應性
- 夫妻離婚分手協議
- 2025年汽車地毯項目合作計劃書
- 中班角色扮演游戲活動計劃
- 兩子女離婚協議書
- 2025年鋰電池購銷合同范例
- 戶外墻體廣告制作安裝協議書
- 09J202-1 坡屋面建筑構造(一)-1
- 小學生運動會安全教育課件
- 扁平足的癥狀與矯正方法
- 青春健康知識100題
- 員工考勤培訓課件
- 危機處理與應急管理
- 國開電大操作系統-Linux系統使用-實驗報告
- 黑臭水體監測投標方案(技術方案)
- 2023年高考生物全國通用易錯題13致死類的遺傳題(解析版)
- 四百字作文格子稿紙(可打印編輯)
- 中建項目裝飾裝修工程施工方案
評論
0/150
提交評論