




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024學年湖北省宜昌市當陽市重點中學中考四模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.92.一個幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.3.等腰中,,D是AC的中點,于E,交BA的延長線于F,若,則的面積為()A.40 B.46 C.48 D.504.李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數,具體情況統計如下:閱讀時間(小時)22.533.54學生人數(名)12863則關于這20名學生閱讀小時數的說法正確的是()A.眾數是8 B.中位數是3C.平均數是3 D.方差是0.345.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數有()A.1 B.2 C.3 D.46.如圖,⊙O的半徑為1,△ABC是⊙O的內接三角形,連接OB、OC,若∠BAC與∠BOC互補,則弦BC的長為()A. B.2 C.3 D.1.57.如圖,在△ABC中,分別以點A和點C為圓心,大于AC長為半徑畫弧,兩弧相交于點M,N,作直線MN分別交BC,AC于點D,E,若AE=3cm,△ABD的周長為13cm,則△ABC的周長為()A.16cm B.19cm C.22cm D.25cm8.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.59.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數y=(k<0)的圖象經過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣3610.如圖,在菱形ABCD中,M,N分別在AB,CD上,且AM=CN,MN與AC交于點O,連接BO.若∠DAC=26°,則∠OBC的度數為()A.54° B.64° C.74° D.26°二、填空題(共7小題,每小題3分,滿分21分)11.甲乙兩人進行飛鏢比賽,每人各投5次,所得平均環數相等,其中甲所得環數的方差為15,乙所得環數如下:0,1,5,9,10,那么成績較穩定的是_____(填“甲”或“乙”).12.如圖,矩形ABCD中,AB=1,BC=2,點P從點B出發,沿B-C-D向終點D勻速運動,設點P走過的路程為x,△ABP的面積為S,能正確反映S與x之間函數關系的圖象是()A. B. C. D.13.如圖,在5×5的正方形(每個小正方形的邊長為1)網格中,格點上有A、B、C、D、E五個點,如果要求連接兩個點之后線段的長度大于3且小于4,則可以連接_____.(寫出一個答案即可)14.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F為DE中點,若點D在直線BC上運動,連接CF,則在點D運動過程中,線段CF的最小值是_____.15.比較大小:___1.(填“>”、“<”或“=”)16.分解因式:_____.17.在一次數學測試中,同年級人數相同的甲、乙兩個班的成績統計如下表:班級平均分中位數方差甲班乙班數學老師讓同學們針對統計的結果進行一下評估,學生的評估結果如下:這次數學測試成績中,甲、乙兩個班的平均水平相同;甲班學生中數學成績95分及以上的人數少;乙班學生的數學成績比較整齊,分化較小.上述評估中,正確的是______填序號三、解答題(共7小題,滿分69分)18.(10分)計算:(﹣1)2018+(﹣)﹣2﹣|2﹣|+4sin60°;19.(5分)“千年古都,大美西安”.某校數學興趣小組就“最想去的西安旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,(景點對應的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據調查結果進行數據整理后繪制出的不完整的統計圖:請根據圖中提供的信息,解答下列問題:(1)求被調查的學生總人數;(2)補全條形統計圖,并求扇形統計圖中表示“最想去景點D”的扇形圓心角的度數;(3)若該校共有800名學生,請估計“最想去景點B”的學生人數.20.(8分)2018年10月23日,港珠澳大橋正式開通,成為橫亙在伶仃洋上的一道靚麗的風景線.大橋主體工程隧道的東、西兩端各設置了一個海中人工島,來銜接橋梁和海地隧道,西人工島上的點和東人工島上的點間的距離約為5.6千米,點是與西人工島相連的大橋上的一點,,,在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達點時觀測兩個人工島,分別測得,與觀光船航向的夾角,,求此時觀光船到大橋段的距離的長(參考數據:,,,,,).21.(10分)《九章算術》中有一道闡述“盈不足術”的問題,原文如下:今有人共買物,人出八,盈三;人出七,不足四.問人數,物價各幾何?譯文為:現有一些人共同買一個物品,每人出8元,還盈余3元;每人出7元,則還差4元,問共有多少人?這個物品的價格是多少?請解答上述問題.22.(10分)已知平行四邊形ABCD中,CE平分∠BCD且交AD于點E,AF∥CE,且交BC于點F.求證:△ABF≌△CDE;如圖,若∠1=65°,求∠B的大小.23.(12分)已知AC,EC分別是四邊形ABCD和EFCG的對角線,直線AE與直線BF交于點H(1)觀察猜想如圖1,當四邊形ABCD和EFCG均為正方形時,線段AE和BF的數量關系是;∠AHB=.(2)探究證明如圖2,當四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時,(1)中的結論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,FC=6,將矩形EFCG繞點C旋轉,在整個旋轉過程中,當A、E、F三點共線時,請直接寫出點B到直線AE的距離.24.(14分)如圖,將矩形ABCD繞點A順時針旋轉,得到矩形AB′C′D′,點C的對應點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】
作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據角平分線的性質得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【題目詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.2、D【解題分析】試題分析:由主視圖和左視圖可得此幾何體上面為臺,下面為柱體,由俯視圖為圓環可得幾何體為.故選D.考點:由三視圖判斷幾何體.視頻3、C【解題分析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D為AC中點,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故選C.4、B【解題分析】
A、根據眾數的定義找出出現次數最多的數;B、根據中位數的定義將這組數據從小到大重新排列,求出最中間的2個數的平均數,即可得出中位數;C、根據加權平均數公式代入計算可得;D、根據方差公式計算即可.【題目詳解】解:A、由統計表得:眾數為3,不是8,所以此選項不正確;B、隨機調查了20名學生,所以中位數是第10個和第11個學生的閱讀小時數,都是3,故中位數是3,所以此選項正確;C、平均數=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【題目點撥】本題考查方差;加權平均數;中位數;眾數.5、C【解題分析】
①圖中有3個等腰直角三角形,故結論錯誤;②根據ASA證明即可,結論正確;③利用面積法證明即可,結論正確;④利用三角形的中線的性質即可證明,結論正確.【題目詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【題目點撥】本題考查相似三角形的判定和性質、等腰直角三角形的判定和性質、三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考選擇題中的壓軸題.6、A【解題分析】分析:作OH⊥BC于H,首先證明∠BOC=120,在Rt△BOH中,BH=OB?sin60°=1×,即可推出BC=2BH=,詳解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB?sin60°=1×=,∴BC=2BH=.故選A.點睛:本題考查三角形的外接圓與外心、銳角三角函數、垂徑定理等知識,解題的關鍵是學會添加常用輔助線.7、B【解題分析】
根據作法可知MN是AC的垂直平分線,利用垂直平分線的性質進行求解即可得答案.【題目詳解】解:根據作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長=AB+BD+BC+AC=13+6=19cm,故選B.【題目點撥】本題考查作圖-基本作圖,線段的垂直平分線的性質等知識,解題的關鍵是熟練掌握線段的垂直平分線的性質.8、C【解題分析】
根據AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據正方形內角及角平分線進行角度轉換證明EG=EB,FG=FB,即可判定②選項;設OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【題目詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,FG=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【題目點撥】本題綜合考查了全等三角形的判定與性質,相似三角形,菱形的判定與性質等四邊形的綜合題.該題難度較大,需要學生對有關于四邊形的性質的知識有一系統的掌握.9、B【解題分析】
解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數y=(k<0)的圖象經過點B,∴﹣4=,得k=﹣32.故選B.【題目點撥】本題主要考查菱形的性質和用待定系數法求反函數的系數,解此題的關鍵在于根據A點坐標求得OA的長,再根據菱形的性質求得B點坐標,然后用待定系數法求得反函數的系數即可.10、B【解題分析】
根據菱形的性質以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,繼而可求得∠OBC的度數.【題目詳解】∵四邊形ABCD為菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故選B.【題目點撥】本題考查了菱形的性質和全等三角形的判定和性質,注意掌握菱形對邊平行以及對角線相互垂直的性質.二、填空題(共7小題,每小題3分,滿分21分)11、甲.【解題分析】乙所得環數的平均數為:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲較穩定.故答案為甲.點睛:要比較成績穩定即比方差大小,方差越大,越不穩定;方差越小,越穩定.12、C【解題分析】
分出情況當P點在BC上運動,與P點在CD上運動,得到關系,選出圖象即可【題目詳解】由題意可知,P從B開始出發,沿B—C—D向終點D勻速運動,則當0<x≤2,s=x當2<x≤3,s=1所以剛開始的時候為正比例函數s=x圖像,后面為水平直線,故選C【題目點撥】本題主要考查實際問題與函數圖像,關鍵在于讀懂題意,弄清楚P的運動狀態13、答案不唯一,如:AD【解題分析】
根據勾股定理求出,根據無理數的估算方法解答即可.【題目詳解】由勾股定理得:,.故答案為答案不唯一,如:AD.【題目點撥】本題考查了無理數的估算和勾股定理,如果直角三角形的兩條直角邊長分別是,,斜邊長為,那么.14、1【解題分析】試題分析:當點A、點C和點F三點共線的時候,線段CF的長度最小,點F在AC的中點,則CF=1.15、<.【解題分析】
根據算術平方根的定義即可求解.【題目詳解】解:∵=1,∴<=1,∴<1.故答案為<.【題目點撥】考查了算術平方根,非負數a的算術平方根a有雙重非負性:①被開方數a是非負數;②算術平方根a本身是非負數.16、【解題分析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續分解因式.因此,先提取公因式2后繼續應用完全平方公式分解即可:.17、【解題分析】
根據平均數、中位數和方差的意義分別對每一項進行解答,即可得出答案.【題目詳解】解:∵甲班的平均成績是92.5分,乙班的平均成績是92.5分,∴這次數學測試成績中,甲、乙兩個班的平均水平相同;故正確;∵甲班的中位數是95.5分,乙班的中位數是90.5分,甲班學生中數學成績95分及以上的人數多,故錯誤;∵甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班學生的數學成績比較整齊,分化較小;故正確;上述評估中,正確的是;故答案為:.【題目點撥】本題考查平均數、中位數和方差,平均數表示一組數據的平均程度中位數是將一組數據從小到大或從大到小重新排列后,最中間的那個數或最中間兩個數的平均數;方差是用來衡量一組數據波動大小的量.三、解答題(共7小題,滿分69分)18、1.【解題分析】分析:本題涉及乘方、負指數冪、二次根式化簡、絕對值和特殊角的三角函數5個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.詳解:原式=1+4-(2-2)+4×,=1+4-2+2+2,=1.點睛:本題主要考查了實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指數冪、零指數冪、二次根式、絕對值等考點的運算.19、(1)40;(2)想去D景點的人數是8,圓心角度數是72°;(3)280.【解題分析】
(1)用最想去A景點的人數除以它所占的百分比即可得到被調查的學生總人數;(2)先計算出最想去D景點的人數,再補全條形統計圖,然后用360°乘以最想去D景點的人數所占的百分比即可得到扇形統計圖中表示“醉美旅游景點D”的扇形圓心角的度數;(3)用800乘以樣本中最想去B景點的人數所占的百分比即可.【題目詳解】(1)被調查的學生總人數為8÷20%=40(人);(2)最想去D景點的人數為40-8-14-4-6=8(人),補全條形統計圖為:扇形統計圖中表示“醉美旅游景點D”的扇形圓心角的度數為×360°=72°;(3)800×=280,所以估計“醉美旅游景點B“的學生人數為280人.【題目點撥】本題考查了條形統計圖:條形統計圖是用線段長度表示數據,根據數量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.從條形圖可以很容易看出數據的大小,便于比較.也考查了扇形統計圖和利用樣本估計總體.20、5.6千米【解題分析】
設PD的長為x千米,DA的長為y千米,在Rt△PAD中利用正切的定義得到tan18°=,即y=0.33x,同樣在Rt△PDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可.【題目詳解】設PD的長為x千米,DA的長為y千米,在Rt△PAD中,tan∠DPA=,即tan18°=,∴y=0.33x,在Rt△PDB中,tan∠DPB=,即tan53°=,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此時觀光船到大橋AC段的距離PD的長為5.6千米.【題目點撥】本題考查了解直角三角形的應用:根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.21、共有7人,這個物品的價格是53元.【解題分析】
根據題意,找出等量關系,列出一元一次方程.【題目詳解】解:設共有x人,這個物品的價格是y元,解得答:共有7人,這個物品的價格是53元.【題目點撥】本題考查了二元一次方程的應用.22、(1)證明見解析;(2)50°.【解題分析】試題分析:(1)由平行四邊形的性質得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,證出∠AFB=∠1,由AAS證明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四邊形的性質和三角形內角和定理即可得出結果.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考點:(1)平行四邊形的性質;(2)全等三角形的判定與性質.23、(1),45°;(2)不成立,理由見解析;(3).【解題分析】
(1)由正方形的性質,可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質得到,∠CAB==45°,又因為∠CBA=90°,所以∠AHB=45°.(2)由矩形的性質,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質可得∠CAE=∠CBF,,則∠CAB=60°,又因為∠CBA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因為A、E、F三點共線,及∠AFB=30°,∠AFC=90°,進而求得AC和EF,根據勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點共線,得:AE=6+2,BF=3+3,則BM=.【題目詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《謹防溺水,珍愛生命》心得體會
- 煤基高端新材料項目可行性研究報告(范文模板)
- 新疆維吾爾自治區喀什地區伽師縣2022-2023學年高三上學期11月期中化學含解析
- 四川省宜賓市四中2023-2024學年高一上學期1月期末生物含解析
- 云南經濟管理學院《口譯理論與實踐》2023-2024學年第二學期期末試卷
- 咸寧職業技術學院《傳播學概論A》2023-2024學年第二學期期末試卷
- 江西電力職業技術學院《中醫學概論(Ⅱ)》2023-2024學年第二學期期末試卷
- 室內設計水電安裝失敗案例分析
- 心理學技能課件
- 湖南有色金屬職業技術學院《組織行為學(工商)》2023-2024學年第二學期期末試卷
- 2025年03月中國醫學科學院生物醫學工程研究所再生醫療器械研發中心公開招聘筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 抵押房屋買賣合同書范例
- 2025飲品店租賃合同
- 珍愛生命遠離毒品國際禁毒日禁毒宣傳教育31
- 初中數學新課程教學案例
- 學校安全管理制度匯編
- 2025年福建省電子信息(集團)有限責任公司招聘筆試參考題庫附帶答案詳解
- 2025年云南省昆明市中考英語模擬試卷(一)
- 臨床危急值培訓課件
- 醫療器械使用安全風險防范措施
- 事故隱患內部報告獎勵制度
評論
0/150
提交評論