




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖南省湘西土家族苗族自治州名校中考一模數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.超市店慶促銷,某種書包原價每個x元,第一次降價打“八折”,第二次降價每個又減10元,經兩次降價后售價為90元,則得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=902.如圖,數軸上有三個點A、B、C,若點A、B表示的數互為相反數,則圖中點C對應的數是()A.﹣2 B.0 C.1 D.43.下列說法不正確的是()A.選舉中,人們通常最關心的數據是眾數B.從1,2,3,4,5中隨機抽取一個數,取得奇數的可能性比較大C.甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩定D.數據3,5,4,1,﹣2的中位數是44.如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數是()A.40° B.50° C.60° D.140°5.在一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,是白球的概率為(
)A. B. C. D.6.如圖,這是根據某班40名同學一周的體育鍛煉情況繪制的條形統計圖,根據統計圖提供的信息,可得到該班40名同學一周參加體育鍛煉時間的眾數、中位數分別是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.57.如圖,已知△ABC,AB=AC,將△ABC沿邊BC翻轉,得到的△DBC與原△ABC拼成四邊形ABDC,則能直接判定四邊形ABDC是菱形的依據是()A.四條邊相等的四邊形是菱形 B.一組鄰邊相等的平行四邊形是菱形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直平分的四邊形是菱形8.如圖,在正三角形ABC中,D,E,F分別是BC,AC,AB上的點,DE⊥AC,EF⊥AB,FD⊥BC,則△DEF的面積與△ABC的面積之比等于()A.1∶3 B.2∶3 C.∶2 D.∶39.如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長是16cm,那么四邊形ABFD的周長是(
)A.16cm B.18cm C.20cm D.21cm10.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為_____.12.計算:=________.13.如圖,ABCD是菱形,AC是對角線,點E是AB的中點,過點E作對角線AC的垂線,垂足是點M,交AD邊于點F,連結DM.若∠BAD=120°,AE=2,則DM=__.14.分解因式:4a2﹣1=_____.15.如圖放置的正方形,正方形,正方形,…都是邊長為的正方形,點在軸上,點,…,都在直線上,則的坐標是__________,的坐標是______.16.要使分式有意義,則x的取值范圍為_________.三、解答題(共8題,共72分)17.(8分)為厲行節能減排,倡導綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區.某公司擬在甲、乙兩個街道社區投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:問題1:單價該公司早期在甲街區進行了試點投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?問題2:投放方式該公司決定采取如下投放方式:甲街區每1000人投放a輛“小黃車”,乙街區每1000人投放輛“小黃車”,按照這種投放方式,甲街區共投放1500輛,乙街區共投放1200輛,如果兩個街區共有15萬人,試求a的值.18.(8分)如圖,已知拋物線y=ax2+bx+5經過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結CD.求該拋物線的表達式;點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.①當點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.19.(8分)關于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)當m為何值時,方程有兩個不相等的實數根;(2)當m為何整數時,此方程的兩個根都為負整數.20.(8分)如圖,在?ABCD中,以點A為圓心,AB的長為半徑的圓恰好與CD相切于點C,交AD于點E,延長BA與⊙O相交于點F.若的長為,則圖中陰影部分的面積為_____.21.(8分)如圖,在Rt△ABC中,,點在邊上,⊥,點為垂足,,∠DAB=450,tanB=.(1)求的長;(2)求的余弦值.22.(10分)如圖,在平面直角坐標系xOy中,正比例函數y=x的圖象與一次函數y=kx-k的圖象的交點坐標為A(m,2).(1)求m的值和一次函數的解析式;(2)設一次函數y=kx-k的圖象與y軸交于點B,求△AOB的面積;(3)直接寫出使函數y=kx-k的值大于函數y=x的值的自變量x的取值范圍.23.(12分)華聯超市準備代銷一款運動鞋,每雙的成本是170元,為了合理定價,投放市場進行試銷.據市場調查,銷售單價是200元時,每天的銷售量是40雙,而銷售單價每降低1元,每天就可多售出5雙,設每雙降低x元(x為正整數),每天的銷售利潤為y元.求y與x的函數關系式;每雙運動鞋的售價定為多少元時,每天可獲得最大利潤?最大利潤是多少?24.如圖,已知一次函數的圖象與反比例函數的圖象交于點,與軸、軸交于兩點,過作垂直于軸于點.已知.(1)求一次函數和反比例函數的表達式;(2)觀察圖象:當時,比較.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】試題分析:設某種書包原價每個x元,根據題意列出方程解答即可.設某種書包原價每個x元,可得:0.8x﹣10=90考點:由實際問題抽象出一元一次方程.2、C【解題分析】【分析】首先確定原點位置,進而可得C點對應的數.【題目詳解】∵點A、B表示的數互為相反數,AB=6∴原點在線段AB的中點處,點B對應的數為3,點A對應的數為-3,又∵BC=2,點C在點B的左邊,∴點C對應的數是1,故選C.【題目點撥】本題主要考查了數軸,關鍵是正確確定原點位置.3、D【解題分析】試題分析:A、選舉中,人們通常最關心的數據為出現次數最多的數,所以A選項的說法正確;B、從1,2,3,4,5中隨機抽取一個數,由于奇數由3個,而偶數有2個,則取得奇數的可能性比較大,所以B選項的說法正確;C、甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩定,所以C選項的說法正確;D、數據3,5,4,1,﹣2由小到大排列為﹣2,1,3,4,5,所以中位數是3,所以D選項的說法錯誤.故選D.考點:隨機事件發生的可能性(概率)的計算方法4、A【解題分析】試題分析:根據直角三角形兩銳角互余求出∠3,再根據兩直線平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故選A.5、D【解題分析】
一個不透明的袋中裝有10個只有顏色不同的球,其中5個紅球、3個黃球和2個白球.從袋中任意摸出一個球,共有10種等可能的結果,其中摸出白球的所有等可能結果共有2種,根據概率公式即可得出答案.【題目詳解】根據題意:從袋中任意摸出一個球,是白球的概率為==.故答案為D【題目點撥】此題主要考查了概率的求法,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.6、A【解題分析】
根據中位數、眾數的概念分別求得這組數據的中位數、眾數.【題目詳解】解:眾數是一組數據中出現次數最多的數,即8;而將這組數據從小到大的順序排列后,處于20,21兩個數的平均數,由中位數的定義可知,這組數據的中位數是9.故選A.【題目點撥】考查了中位數、眾數的概念.本題為統計題,考查眾數與中位數的意義,中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數,如果中位數的概念掌握得不好,不把數據按要求重新排列,就會錯誤地將這組數據最中間的那個數當作中位數.7、A【解題分析】
根據翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根據菱形的判定推出即可.【題目詳解】∵
將
△ABC
延底邊
BC
翻折得到
△DBC
,∴AB=BD
,
AC=CD
,∵AB=AC
,∴AB=BD=CD=AC
,∴
四邊形
ABDC
是菱形;故選A.【題目點撥】本題考查了菱形的判定方法:四邊都相等的四邊形是菱形;對角線互相垂直的平行四邊形是菱形;有一組鄰邊相等的平行四邊形是菱形.8、A【解題分析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF與△ABC的面積之比=,又∵△ABC為正三角形,∴∠B=∠C=∠A=60°∴△EFD是等邊三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF與△ABC的面積之比等于:故選A.點晴:本題主要通過證出兩個三角形是相似三角形,再利用相似三角形的性質:相似三角形的面積之比等于對應邊之比的平方,進而將求面積比的問題轉化為求邊之比的問題,并通過含30度角的直角三角形三邊間的關系(銳角三角形函數)即可得出對應邊之比,進而得到面積比.9、C【解題分析】試題分析:已知,△ABE向右平移2cm得到△DCF,根據平移的性質得到EF=AD=2cm,AE=DF,又因△ABE的周長為16cm,所以AB+BC+AC=16cm,則四邊形ABFD的周長=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案選C.考點:平移的性質.10、D【解題分析】解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解題分析】
由∠ACD=∠B結合公共角∠A=∠A,即可證出△ACD∽△ABC,根據相似三角形的性質可得出=()2=,結合△ADC的面積為1,即可求出△BCD的面積.【題目詳解】∵∠ACD=∠B,∠DAC=∠CAB,∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S△ACD=4,∴S△BCD=S△ABC﹣S△ACD=4﹣1=1.故答案為1.【題目點撥】本題考查相似三角形的判定與性質,解題的關鍵是掌握相似三角形的判定與性質.12、.【解題分析】
根據異分母分式加減法法則計算即可.【題目詳解】原式.故答案為:.【題目點撥】本題考查了分式的加減,關鍵是掌握分式加減的計算法則.13、.【解題分析】
作輔助線,構建直角△DMN,先根據菱形的性質得:∠DAC=60°,AE=AF=2,也知菱形的邊長為4,利用勾股定理求MN和DN的長,從而計算DM的長.【題目詳解】解:過M作MN⊥AD于N,∵四邊形ABCD是菱形,∴∵EF⊥AC,∴AE=AF=2,∠AFM=30°,∴AM=1,Rt△AMN中,∠AMN=30°,∴∵AD=AB=2AE=4,∴由勾股定理得:故答案為【題目點撥】本題主要考查了菱形的性質,等腰三角形的性質,勾股定理及直角三角形30度角的性質,熟練掌握直角三角形中30°所對的直角邊是斜邊的一半.14、(2a+1)(2a﹣1)【解題分析】
有兩項,都能寫成完全平方數的形式,并且符號相反,可用平方差公式展開.【題目詳解】4a2﹣1=(2a+1)(2a﹣1).故答案為:(2a+1)(2a-1).【題目點撥】此題考查多項式因式分解,根據多項式的特點選擇適合的分解方法是解題的關鍵.15、【解題分析】
先求出OA的長度,然后利用含30°的直角三角形的性質得到點D的坐標,探索規律,從而得到的坐標即可.【題目詳解】分別過點作y軸的垂線交y軸于點,∵點B在上設∴同理,都是含30°的直角三角形∵,∴同理,點的橫坐標為縱坐標為故點的坐標為故答案為:;.【題目點撥】本題主要考查含30°的直角三角形的性質,找到點的坐標規律是解題的關鍵.16、x≠1【解題分析】由題意得x-1≠0,∴x≠1.故答案為x≠1.三、解答題(共8題,共72分)17、問題1:A、B兩型自行車的單價分別是70元和80元;問題2:a的值為1【解題分析】
問題1:設A型車的成本單價為x元,則B型車的成本單價為(x+10)元,依題意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B兩型自行車的單價分別是70元和80元;問題2:由題可得,×1000+×1000=10000,解得a=1,經檢驗:a=1是分式方程的解,故a的值為1.18、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標為P(﹣,﹣)或(0,5).【解題分析】
(1)將點A、B坐標代入二次函數表達式,即可求出二次函數解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數表達式并解得:直線BC的表達式為:y=x+1,設點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設直線BP與CD交于點H,當點P在直線BC下方時,求出線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,、聯立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當點P(P′)在直線BC上方時,根據∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達式為:y=2x+5,聯立y=x2+6x+5和y=2x+5,求出x,即可求出P.【題目詳解】解:(1)將點A、B坐標代入二次函數表達式得:,解得:,故拋物線的表達式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數表達式并解得:直線BC的表達式為:y=x+1…②,設點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當t=﹣時,其最大值為;②設直線BP與CD交于點H,當點P在直線BC下方時,∵∠PBC=∠BCD,∴點H在BC的中垂線上,線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,設BC中垂線的表達式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,聯立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯立①⑤并解得:x=﹣或﹣4(舍去﹣4),故點P(﹣,﹣);當點P(P′)在直線BC上方時,∵∠PBC=∠BCD,∴BP′∥CD,則直線BP′的表達式為:y=2x+s,將點B坐標代入上式并解得:s=5,即直線BP′的表達式為:y=2x+5…⑥,聯立①⑥并解得:x=0或﹣4(舍去﹣4),故點P(0,5);故點P的坐標為P(﹣,﹣)或(0,5).【題目點撥】本題考查的是二次函數,熟練掌握拋物線的性質是解題的關鍵.19、(1)m≠1且m≠;(2)m=-1或m=-2.【解題分析】
(1)由方程有兩個不相等的實數根,可得△>1,列出關于m的不等式解之可得答案;(2)解方程,得:,,由m為整數,且方程的兩個根均為負整數可得m的值.【題目詳解】解:(1)△=-4ac=(3m-2)+24m=(3m+2)≥1當m≠1且m≠時,方程有兩個不相等實數根.(2)解方程,得:,,m為整數,且方程的兩個根均為負整數,m=-1或m=-2.m=-1或m=-2時,此方程的兩個根都為負整數【題目點撥】本題主要考查利用一元二次方程根的情況求參數.20、S陰影=2﹣.【解題分析】
由切線的性質和平行四邊形的性質得到BA⊥AC,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE,根據弧長公式求出弧長,得到半徑,即可求出結果.【題目詳解】如圖,連接AC,∵CD與⊙A相切,∴CD⊥AC,在平行四邊形ABCD中,∵AB=DC,AB∥CD∥BC,∴BA⊥AC,∵AB=AC,∴∠ACB=∠B=45°,∵AD∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE,∴∴的長度為解得R=2,S陰=S△ACD-S扇形=【題目點撥】此題主要考查圓內的面積計算,解題的關鍵是熟知平行四邊形的性質、切線的性質、弧長計算及扇形面積的計算.21、(1)3;(2)【解題分析】分析:(1)由題意得到三角形ADE為等腰直角三角形,在直角三角形DEB中,利用銳角三角函數定義求出DE與BE之比,設出DE與BE,由AB=7求出各自的值,確定出DE即可;(2)在直角三角形中,利用勾股定理求出AD與BD的長,根據tanB的值求出cosB的值,確定出BC的長,由BC﹣BD求出CD的長,利用銳角三角函數定義求出所求即可.詳解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,設DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;(2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值為.點睛:本題考查了解直角三角形,涉及的知識有:銳角三角函數定義,勾股定理,等腰直角三角形的判定與性質,熟練掌握各自的性質是解答本題的關鍵.22、(1)y=1x﹣1(1)1(3)x>1【解題分析】試題分析:(1)先把A(m,1)代入正比例函數解析式可計算出m=1,然后把A(1,1)代入y=kx﹣k計算出k的值,從而得到一次函數解析式為y=1x﹣1;(1)先確定B點坐標,然后根據三角形面積公式計算;(3)觀察函數圖象得到當x>1時,直線y=kx﹣k都在y=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 老年肺部感染護理
- 森林火災警示教育
- 簽訂未成年監護人責任合同全指南
- 新進人員院感培訓
- 兩人合資公司設立合同模板
- 蔬菜供應合同樣本
- 化工儀表模擬考試題+參考答案
- 電機學模擬題及參考答案
- 運動生理學模考試題+參考答案
- 學前班數學口算試題
- 化療藥物規范配置
- 學校滅火及應急疏散預案
- 江蘇省揚州市梅嶺集團2024-2025學年九年級下學期3月月考英語試題(原卷版+解析版)
- 啄木鳥簡介課件
- 2025年義烏工商職業技術學院單招職業適應性測試題庫及參考答案1套
- 2025年幼兒教師筆試試題及答案
- 病區8S管理成果匯報
- 2025年北京電子科技職業學院高職單招職業技能測試近5年常考版參考題庫含答案解析
- 2025年華僑港澳臺學生聯招考試英語試卷試題(含答案詳解)
- 2024年安徽省安慶市中考一模數學試題
- 2025年臨床醫師定期考核必考復習題庫及答案(1080題)
評論
0/150
提交評論