江蘇省淮安市淮安中學2023年高二上數學期末檢測試題含解析_第1頁
江蘇省淮安市淮安中學2023年高二上數學期末檢測試題含解析_第2頁
江蘇省淮安市淮安中學2023年高二上數學期末檢測試題含解析_第3頁
江蘇省淮安市淮安中學2023年高二上數學期末檢測試題含解析_第4頁
江蘇省淮安市淮安中學2023年高二上數學期末檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省淮安市淮安中學2023年高二上數學期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或2.函數的最大值為()A.32 B.27C.16 D.403.如圖,將邊長為4的正方形折成一個正四棱柱的側面,則異面直線AK和LM所成角的大小為()A.30° B.45°C.60° D.90°4.已知拋物線的焦點是雙曲線的一個焦點,則雙曲線的漸近線方程為()A. B.C. D.5.已知數列的首項為,且,若,則的取值范圍是()A. B.C. D.6.經過點且與直線垂直的直線方程為()A. B.C. D.7.已知拋物線的焦點為,為拋物線上第一象限的點,若,則直線的傾斜角為()A. B.C. D.8.若“”是“”的充分不必要條件,則實數m的值為()A.1 B.C.或1 D.或9.已知等差數列為其前項和,且,且,則()A.36 B.117C. D.1310.已知直四棱柱的棱長均為,則直線與側面所成角的正切值為()A. B.C. D.11.若雙曲線經過點,且它的兩條漸近線方程是,則雙曲線的離心率是()A. B.C. D.1012.已知空間直角坐標系中的點,,,則點P到直線AB的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線左、右焦點分別為,,點P是雙曲線左支上一點且,則______14.已知雙曲線的右焦點為,過點作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點.若,則雙曲線的離心率為___________.15.若數列滿足,,設,類比課本中推導等比數列前項和公式的方法,可求得______________16.底面半徑為1,母線長為2的圓錐的體積為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標準方程;(2)設O為坐標原點,過點的直線l與橢圓E交于A,B兩點,判斷是否存在常數,使得為定值?若存在,求出的值;若不存在,請說明理由.18.(12分)已知四邊形是空間直角坐標系中的一個平行四邊形,且,,(1)求點的坐標;(2)求平行四邊形的面積19.(12分)已知與定點,的距離比為的點P的軌跡為曲線C,過點的直線l與曲線C交于M,N兩點.(1)求曲線C的軌跡方程;(2)若,求.20.(12分)某雙曲線型自然冷卻通風塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉一周所形成的曲面,如圖2所示.雙曲線的左、右頂點分別為、.已知該冷卻通風塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標系的基礎上,保持原點和x軸、y軸不變,建立空間直角坐標系,如圖3所示.在上口圓上任取一點,在下口圓上任取一點.請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點P、Q,使得P、A、Q三點共線.若不存在,請說明理由;若存在,求出點P、Q的坐標,并證明此時線段PQ上任意一點都在曲面上.21.(12分)已知函數(1)討論函數的單調性;(2)若函數有兩個零點,,證明:22.(10分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為3,直線與拋物線交于,兩點,為坐標原點(1)求拋物線的方程;(2)求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據曲線方程的特征,發現曲線表示在軸上方的圖象,畫出圖形,根據圖形上直線的三個特殊位置,當已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應的的值;當已知直線位于直線及直線的位置時,分別求出對應的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當直線在直線位置時,直線與曲線剛好有兩個交點,此時,當直線在直線位置時,直線與曲線只有一個公共點,此時,則當時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D2、A【解析】利用導數即可求解.【詳解】因為,所以當時,;當時,.所以函數在上單調遞增;在上單調遞增,,因此,的最大值為.故選:A3、D【解析】作出折疊后的正四棱錐,確定線面關系,從而把異面直線的夾角通過平移放到一個平面內求得.【詳解】由題知,折疊后的正四棱錐如圖所示,易知K為的四等分點,L為的中點,M為的四等分點,,取的中點N,易證,則異面直線AK和LM所成角即直線AK和KN所成角,在中,,,故故選:D4、B【解析】根據拋物線和寫出焦點坐標,利用題干中的坐標相等,解出,結合從而求出答案.【詳解】拋物線的焦點為,雙曲線的,,所以,所以雙曲線的右焦點為:,由題意,,兩邊平方解得,,則雙曲線的漸近線方程為:.故選:B.5、C【解析】由題意,得到,利用疊加法求得,結合由,轉化為恒成立,分,和三種情況討論,即可求解.【詳解】因為,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,當時,,不等式可化為恒成立,所以;當時,,不等式可化為恒成立;當時,,不等式可化為恒成立,所以,綜上可得,實數的取值范圍是.故選:C.6、A【解析】根據點斜式求得正確答案.【詳解】直線的斜率為,經過點且與直線垂直的直線方程為,即.故選:A7、C【解析】設點,其中,,根據拋物線的定義求得點的坐標,即可求得直線的斜率,即可得解.【詳解】設點,其中,,則,可得,則,所以點,故,因此,直線的傾斜角為.故選:C.8、B【解析】利用定義法進行判斷.【詳解】把代入,得:,解得:或.當時,可化為:,解得:,此時“”是“”的充要條件,應舍去;當時,可化為:,解得:或,此時“”是“”的充分不必要條件.故.故選:B9、B【解析】根據等差數列下標的性質,,進而根據條件求出,然后結合等差數列的求和公式和下標性質求得答案.【詳解】由題意,,即為遞增數列,所以,又,又,聯立方程組解得:.于是,.故選:B.10、D【解析】根據題意把直線與側面所成角的正切值轉化為在直角三角形中的正切值,即可求出答案.【詳解】由題意可知直四棱柱如下圖所示:取的中點設為點,連接,在直四棱柱中,面,面,,在四邊形中,,,故且.面,面,面,.故直線與側面所成角的正切值為.故選:D.11、A【解析】由已知設雙曲線方程為:,代入求得,計算即可得出離心率.【詳解】雙曲線經過點,且它的兩條漸近線方程是,設雙曲線方程為:,代入得:,.所以雙曲線方程為:..雙曲線C的離心率為故選:A12、D【解析】由向量在向量上的投影及勾股定理即可求.【詳解】,0,,,1,,,,,,在上的投影為,則點到直線的距離為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據雙曲線方程求出,再根據雙曲線的定義可知,即可得到、,再由正弦定理計算可得;【詳解】解:因為雙曲線為,所以、,因為點P是雙曲線左支上一點且,所以,所以,,在中,由正弦定理可得,所以;故答案為:14、【解析】按題意求得,兩點坐標,以代數式表達出條件,即可得到關于的關系式,進而解得雙曲線的離心率.【詳解】雙曲線的右焦點為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:15、n【解析】先對兩邊同乘以4,再相加,化簡整理即可得出結果.【詳解】由①得:②所以①②得:,所以,,故答案為【點睛】本題主要考查類比推理的思想,結合錯位相減法思想即可求解,屬于基礎題型.16、【解析】先由勾股定理求圓錐的高,再結合圓錐的體積公式運算即可得解.【詳解】解:設圓錐的高為,由勾股定理可得,由圓錐的體積可得,故答案為.【點睛】本題考查了圓錐的體積公式,重點考查了勾股定理,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】(1)根據給定條件求出橢圓長短半軸長即可代入計算作答.(2)當直線l的斜率存在時,設出直線l的方程,與橢圓E的方程聯立,利用韋達定理、向量數量積運算,推理計算作答.【小問1詳解】依題意,,半焦距為c,則離心率,即,有,所以橢圓E的標準方程為:.【小問2詳解】當直線l的斜率存在時,設直線l的方程為,由消去y并整理得:,設,則,,,,,,要使為定值,必有,解得,此時,當直線l的斜率不存在時,由對稱性不妨令,,,當時,,即當時,過點的任意直線l與橢圓E交于A,B兩點,恒有,所以存在滿足條件.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值18、(1);(2)【解析】(1)由題設可得,結合向量的共線坐標表示求的坐標;(2)向量的坐標運算求邊長,由余弦定理求,進而求其正弦值,再應用三角形面積公式求面積.【小問1詳解】由題設,,令,則,∴,可得,故.【小問2詳解】由(1),,,則,又,則,∴平行四邊形的面積.19、(1)(2)或【解析】(1)設曲線上的任意一點,由題意可得,化簡即可得出(2)分直線的斜率不存在與存在兩種情況討論,當斜率不存在時,即可求出、的坐標,從而求出,當直線的斜率存在,設直線方程為,,,聯立直線與圓的方程,消元列出韋達定理,則,即可求出,從而求出直線方程,由圓心在直線上,即可求出弦長;【小問1詳解】解:(1)設曲線上的任意一點,由題意可得:,即,整理得【小問2詳解】解:依題意當直線的斜率不存在時,直線方程為,則,則或,即、,所以、,所以滿足條件,此時,當直線的斜率存在,設直線方程為,,,則,消去整理得,由,解得或,所以、,因為,,所以,解得,所以直線方程為,又直線過圓心,所以,綜上可得或;20、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設雙曲線的標準方程為,易知,設,,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數方程,設,,利用,即可求解,再利用線段PQ上任意一點的特征證明點在曲面上;【小問1詳解】設雙曲線的標準方程為,由題意知,點,的橫坐標分別為,,則設點,的坐標為,,,,,解得,,又塔高米,,解得,故所求的雙曲線的方程為【小問2詳解】點在圓上,;點在圓上,;圓,其半徑為,;圓,其半徑為,【小問3詳解】存在點P、Q,使得P、A、Q三點共線.由點在半徑為的圓上,(為參數);點在半徑為的圓上,(為參數);由已知得,整理得兩式平方求和得,則或當時,,當時,證明:,則,利用,,其中又曲面上的每一點可以是圓與旋轉任意坐標系上的雙曲線的交點,旋轉直角坐標系,保持原點和y軸不變,點所在的軸為軸,此時,滿足,即即點是曲面上的點.21、(1)函數的單調性見解析;(2)證明見解析.【解析】(1)求出函數的導數,按a值分類討論判斷的正負作答.(2)將分別代入計算化簡變形,再對所證不等式作等價變形,構造函數,借助函數導數推理作答.【小問1詳解】已知函數的定義域為,,當時,恒成立,所以在區間上單調遞增;當時,由,解得,由,解得,的單調遞增區間為,單調遞減區間為,所以,當時,在上單調遞增,當時,在上單調遞增,在上單調遞減.【小問2詳解】依題意,不妨設,則,,于是得,即,亦有,即,因此,,要證明,即證,即證,即證,即證,令,,,則有在上單調遞增,,,即成立,所以.【點睛】思路點睛:涉及雙變量的不等式證明問題,將所證不等式等價轉化,構造新函數,再借助導數探討函數的單調性、極(最)值問題處理.22、(1);(2)【解析】(1)由題意可設拋物線的方程為y2=2px(p>0),運用拋物線的定義,可得23,解得p=2,進而得到拋物線的方程;(2)由題意,直線AB方程為y=x﹣1,與y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根與系數的關系和弦長公式,算出|AB|;利用點到直線的距離公式算出點O到直線AB的距離,即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論