湖南省長沙市開福區長沙市第一中學2023年高二上數學期末質量跟蹤監視試題含解析_第1頁
湖南省長沙市開福區長沙市第一中學2023年高二上數學期末質量跟蹤監視試題含解析_第2頁
湖南省長沙市開福區長沙市第一中學2023年高二上數學期末質量跟蹤監視試題含解析_第3頁
湖南省長沙市開福區長沙市第一中學2023年高二上數學期末質量跟蹤監視試題含解析_第4頁
湖南省長沙市開福區長沙市第一中學2023年高二上數學期末質量跟蹤監視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省長沙市開福區長沙市第一中學2023年高二上數學期末質量跟蹤監視試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓是橢圓上關于原點對稱的兩點,設以為對角線的橢圓內接平行四邊形的一組鄰邊斜率分別為,則()A.1 B.C. D.2.已知不等式的解集為,關于x的不等式的解集為B,且,則實數a的取值范圍為()A. B.C. D.3.若雙曲線的一條漸近線方程為.則()A. B.C.2 D.44.紫砂壺是中國特有的手工制造陶土工藝品,其制作始于明朝正德年間.紫砂壺的壺型眾多,經典的有西施壺、掇球壺、石瓢壺、潘壺等.其中,石瓢壺的壺體可以近似看成一個圓臺(即圓錐用平行于底面的平面截去一個錐體得到的).下圖給出了一個石瓢壺的相關數據(單位:cm),那么該壺的容量約為()A.100 B.C.300 D.4005.若存在,使得不等式成立,則實數k的取值范圍為()A. B.C. D.6.若直線與曲線有兩個公共點,則實數的取值范圍為()A. B.C. D.7.雙曲線的焦距是()A.4 B.C.8 D.8.二次方程的兩根為2,,那么關于的不等式的解集為()A.或 B.或C. D.9.已知命題p:函數在(0,1)內恰有一個零點;命題q:函數在上是減函數,若p且為真命題,則實數的取值范圍是A. B.2C.1<≤2 D.≤l或>210.如圖,修建一條公路需要一段環湖彎曲路段與兩條直道平滑連接(相切).已知環湖彎曲路段為某三次函數圖象的一部分,則該函數的解析式為()A.B.C.D.11.已知橢圓與雙曲線有共同的焦點,則()A.14 B.9C.4 D.212.當實數,m變化時,的最大值是()A.3 B.4C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.設函數的導數為,且,則___________14.雙曲線的離心率為2,寫出滿足條件的一個雙曲線的標準方程__________.15.已知離心率為,且對稱軸都在坐標軸上的雙曲線C過點,過雙曲線C上任意一點P,向雙曲線C的兩條漸近線分別引垂線,垂足分別是A,B,點O為坐標原點,則四邊形OAPB的面積為______16.在等比數列中,若,是方程兩根,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(Ⅰ)討論函數的極值點的個數(Ⅱ)若,,求的取值范圍18.(12分)如圖所示,在直三棱柱中,是等腰直角三角形,(1)證明:;(2)若點E是棱的中點,求平面與平面所成銳二面角的余弦值19.(12分)在①,;②,;③,.這三個條件中任選一個,補充在下面問題中.問題:已知數列的前n項和為,,___________.(1)求數列的通項公式(2)已知,求數列的前n項和.20.(12分)已知為直角梯形,,平面,,.(1)求證:平面;(2)求平面與平面所成銳二面角的余弦值.21.(12分)已知,,其中(1)已知,若為真,求的取值范圍;(2)若是的充分不必要條件,求實數的取值范圍22.(10分)已知橢圓:()的左、右焦點分別為,焦距為,過點作直線交橢圓于兩點,的周長為.(1)求橢圓的方程;(2)若斜率為的直線與橢圓相交于兩點,求定點與交點所構成的三角形面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據橢圓的對稱性和平行四邊形的性質進行求解即可.【詳解】是橢圓上關于原點對稱兩點,所以不妨設,即,因為平行四邊形也是中心對稱圖形,所以也是橢圓上關于原點對稱的兩點,所以不妨設,即,,得:,即,故選:C2、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分離參數求解即可.【詳解】由得,,解得,因為,所以所以可得在上恒成立,即在上恒成立,故只需,,當時,,故故選:B3、C【解析】求出漸近線方程為,列出方程求出.【詳解】雙曲線的漸近線方程為,因為,所以,所以.故選:C4、B【解析】根據圓臺的體積等于兩個圓錐的體積之差,即可求出【詳解】設大圓錐的高為,所以,解得故故選:B【點睛】本題主要考查圓臺體積的求法以及數學在生活中的應用,屬于基礎題5、C【解析】根據題意和一元二次不等式能成立可得對于,成立,令,利用導數討論函數的單調性,即可求出.【詳解】存在,不等式成立,則,能成立,即對于,成立,令,,則,令,所以當,單調遞增,當,單調遞減,又,所以f(x)>-3,所以.故選:C6、D【解析】由題可知,曲線表示一個半圓,結合半圓的圖像和一次函數圖像即可求出的取值范圍.【詳解】由得,畫出圖像如圖:當直線與半圓O相切時,直線與半圓O有一個公共點,此時,,所以,由圖可知,此時,所以,當直線如圖過點A、B時,直線與半圓O剛好有兩個公共點,此時,由圖可知,當直線介于與之間時,直線與曲線有兩個公共點,所以.故選:D.7、C【解析】根據,先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎題.8、B【解析】根據,確定二次函數的圖象開口方向,再由二次方程的兩根為2,,寫出不等式的解集.【詳解】因為二次方程的兩根為2,,又二次函數的圖象開口向上,所以不等式的解集為或,故選:B9、C【解析】命題p為真時:;命題q為真時:,因為p且為真命題,所以命題p為真,命題q為假,即,選C考點:命題真假10、D【解析】由題設,“需要一段環湖彎曲路段與兩條直道平滑連接(相切)“可得出此兩點處的切線正是兩條直道所在直線,由此規律驗證四個選項即可得出答案【詳解】由函數圖象知,此三次函數在上處與直線相切,在點處與相切,下研究四個選項中函數在兩點處的切線A:,將0代入,此時導數為,與點處切線斜率為矛盾,故A錯誤B:,將0代入,此時導數為,不為,故B錯誤;C:,將2代入,此時導數為,與點處切線斜率為3矛盾,故C錯誤;D:,將0,2代入,解得此時切線的斜率分別是,3,符合題意,故D正確;故選:D.11、C【解析】根據給定條件結合橢圓、雙曲線方程的特點直接列式計算作答.【詳解】設橢圓半焦距為c,則,而橢圓與雙曲線有共同的焦點,則在雙曲線中,,即有,解得,所以.故選:C12、D【解析】根據點到直線的距離公式可知可以表示單位圓上點到直線的距離,利用圓的性質結合圖形即得.【詳解】由題可知,可以表示單位圓上點到直線的距離,設,因直線,即表示恒過定點,根據圓的性質可得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,而,所以,,故填:.考點:導數14、(答案不唯一例如:等,只需滿足即可)【解析】根據離心率和的關系,可得到,只要滿足以上關系的即可【詳解】由題可知,又,所以,只要滿足以上關系即可.,答案不唯一例如:等故答案為:(答案不唯一例如:等,只需滿足即可)15、2【解析】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,可得雙曲線方程為,設,則到兩漸近線的距離為,,從而可求四邊形的面積【詳解】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,又雙曲線過點,,∴,故雙曲線方程為,∴漸近線方程為,設,則到兩漸近線的距離為,,且,∵漸近線方程為,∴四邊形為矩形,∴四邊形的面積為故答案為:216、.【解析】由題意求得,,再結合等比數列的性質,即可求解.【詳解】由題意知,,是方程的兩根,可得,,又由,,所以,,可得,又由,所以.故答案為:.【點睛】本題主要考查了等比數列的通項公式,以及等比數列的性質的應用,其中解答中熟練應用等比數列的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三種情況討論,求得函數的單調性,結合極值的概念,即可求解;(Ⅱ)由不等式,轉化為當時,不等式恒成立,設,利用導數求得函數的單調性與最值,即可求解.【詳解】(Ⅰ)由題意,函數的定義域為,且,當時,令,解得,令,解得或,故在上單調遞減,在,上單調遞增,所以有一個極值點;當時,令,解得或,令,得,故在,上單調遞減,在上單調遞增,所以有一個極值點;當時,上單調遞增,在上單調遞減,所以沒有極值點綜上所述,當時,有個極值點;當時,沒有極值點.(Ⅱ)由,即,可得,即當時,不等式恒成立,設,則設,則因為,所以,所以在上單調遞增,所以,所以在上單調遞減,在上單調遞增,所以,所以所以的取值范圍是.【點睛】對于利用導數研究不等式的恒成立問題的求解策略:1、通常要構造新函數,利用導數研究函數的單調性,求出最值,從而求出參數的取值范圍;2、利用可分離變量,構造新函數,直接把問題轉化為函數的最值問題3、根據恒成求解參數的取值時,一般涉及分類參數法,但壓軸試題中很少碰到分離參數后構造的新函數能直接求出最值點的情況,通常要設出導數的零點,難度較大.18、(1)證明見解析(2)【解析】(1)根據線面垂直的判定定理證出平面,即可證得;(2)以A為原點,分別以所在直線為x軸,y軸,z軸建立空間直角坐標系,根據二面角的向量公式即可求出【小問1詳解】如圖,連接,由已知可得四邊形是正方形,所以在直三棱柱中,平面平面,交線為,在中,可知,所以平面,于因為,所以平面,而平面,所以【小問2詳解】如圖所示,以A為原點,分別以所在直線為x軸,y軸,z軸建立空間直角坐標系,則,于是設平面的法向量為,則,可取而平面的一個法向量為,所以故平面與平面所成銳二面角的余弦值為19、(1)(2)【解析】(1)選①,利用化已知等式為,得是等差數列,公差,求出其通項公式后,再由求得通項公式,注意;選②,由可變形已知條件得是等差數列,從而求得通項公式;選③,已知式兩邊同除以,得出,以下同選①;(2)由錯位相減法求和【小問1詳解】選①,由得,,所以,即,所以是等差數列,公差,又,,,所以,,時,也適合所以;選②,由得,所以等差數列,公差為,又,所以;選③,由得,以下同選①,【小問2詳解】由(1),,,兩式相減得,所以20、(1)證明見解析;(2).【解析】建立空間直角坐標系.(1)方法一,利用向量的方法,通過計算,,證得,,由此證得平面.方法二,利用幾何法,通過平面證得,結合證得,由此證得平面.(2)通過平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】如圖,以為原點建立空間直角坐標系,可得,,,.(1)證明法一:因為,,,所以,,所以,,,平面,平面,所以平面.證明法二:因為平面,平面,所以,又因為,即,,平面,平面,所以平面.(2)由(1)知平面的一個法向量,設平面的法向量,又,,且所以所以平面的一個法向量為,所以,所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)(2)【解析】(1)求出兩個命題為真命題時的解集然后利用為真,取并求得的取值范圍;(2)由是的充分不必要條件,即,,其逆否命題為,列出不等式組求解即可.【詳解】(1)由,解得,所以又,因為,解得,所以.當時,,又為真,所以.(2)由是的充分不必要條件,即,,其逆否命題為,由(1),,所以,即:【點睛】該題考查的是有關邏輯的問題,涉及到的知識點有命題的真假判斷與應用,充分不必要條件對應的等價結果,注意原命題與逆否命題等價,屬于簡單題目.22、(1)(2)【解析】(1)根據題意可得,,再由,即可求解.(2)設直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論