湖北省鄖陽中學2023年數學高二上期末經典試題含解析_第1頁
湖北省鄖陽中學2023年數學高二上期末經典試題含解析_第2頁
湖北省鄖陽中學2023年數學高二上期末經典試題含解析_第3頁
湖北省鄖陽中學2023年數學高二上期末經典試題含解析_第4頁
湖北省鄖陽中學2023年數學高二上期末經典試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省鄖陽中學2023年數學高二上期末經典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若圓與圓相外切,則的值為()A. B.C.1 D.2.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.3.在等比數列中,若是函數的極值點,則的值是()A. B.C. D.4.已知圓M的圓心在直線上,且點,在M上,則M的方程為()A. B.C. D.5.已知等比數列中,,則由此數列的奇數項所組成的新數列的前項和為()A. B.C. D.6.在等差數列中,,且構成等比數列,則公差等于()A.0 B.3C. D.0或37.某地區高中分三類,A類學校共有學生2000人,B類學校共有學生3000人,C類學校共有學生4000人,若采取分層抽樣的方法抽取900人,則A類學校中的學生甲被抽到的概率()A. B.C. D.8.如圖,,是平面上兩點,且,圖中的一系列圓是圓心分別為,的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,A,B,C,D,E是圖中兩組同心圓的部分公共點.若點A在以,為焦點的橢圓M上,則()A.點B和C都在橢圓M上 B.點C和D都在橢圓M上C.點D和E都在橢圓M上 D.點E和B都在橢圓M上9.已知數列是等差數列,為數列的前項和,,,則()A.54 B.71C.81 D.8010.已知,,,則最小值是()A.10 B.9C.8 D.711.若,則()A.0 B.1C. D.212.拋物線的焦點到直線的距離()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.某部門計劃對某路段進行限速,為調查限速60km/h是否合理,對通過該路段的300輛汽車的車速進行檢測,將所得數據按,,,分組,繪制成如圖所示頻率分布直方圖.則________;這300輛汽車中車速低于限速60km/h的汽車有______輛.14.,若2是與的等比中項,則的最小值為___________.15.已知點,平面過原點,且垂直于向量,則點到平面的距離是_________.16.隨機抽取某社區名居民,調查他們某一天吃早餐所花的費用(單位:元),所獲數據的莖葉圖如圖所示,則這個數據的眾數是_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為2的正方體中,E,F分別為AB,BC上的動點,且.(1)求證:;(2)當時,求點A到平面的距離.18.(12分)如圖,四邊形ABCD是正方形,四邊形BEDF是菱形,平面平面.(1)證明:;(2)若,且平面平面BEDF,求平面ADE與平面CDF所成的二面角的正弦值.19.(12分)籃天技校為了了解車床班學生的操作能力,設計了一個考查方案;每個考生從道備選題中一次性隨機抽取道題,按照題目要求獨立完成零件加工,規定:至少正確加工完成其中個零件方可通過.道備選題中,考生甲有個零件能正確加工完成,個零件不能完成;考生乙每個零件正確完成的概率都是,且每個零件正確加工完成與否互不影響(1)分別求甲、乙兩位考生正確加工完成零件數的概率分布列(列出分布列表);(2)試從甲、乙兩位考生正確加工完成零件數的數學期望及兩人通過考查的概率分析比較兩位考生的操作能力20.(12分)某校在全體同學中隨機抽取了100名同學,進行體育鍛煉時間的專項調查.將調查數據按平均每天鍛煉時間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時間不少于60分鐘的同學定義為鍛煉達標,平均每天體育鍛煉時間少于60分鐘的同學定義為鍛煉不達標(1)求a的值,并估計該校同學平均每天體育鍛煉時間的中位數;(2)在樣本中,對平均每天體育鍛煉時間不達標的同學,按分層抽樣的方法抽取6名同學了解不達標的原因,再從這6名同學中隨機抽取2名進行調研,求這2名同學中至少有一名每天體育鍛煉時間(單位:分鐘)在內的概率21.(12分)已知動點M到點F(0,2)的距離,與點M到直線l:y=﹣2的距離相等.(1)求動點M的軌跡方程;(2)若過點F且斜率為1的直線與動點M的軌跡交于A,B兩點,求線段AB的長度.22.(10分)已知函數,其中為實數.(1)若函數的圖像在處的切線與直線平行,求函數的解析式;(2)若,求在上的最大值和最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因為兩圓相外切,所以,解得,故選:D2、D【解析】設直線傾斜角為,則,即可求出.【詳解】設直線的傾斜角為,則,又因為,所以.故選:D.3、B【解析】根據導數的性質求出函數的極值點,再根據等比數列的性質進行求解即可.【詳解】,當時,單調遞增,當時,單調遞減,當時,單調遞增,所以是函數的極值點,因為,且所以,故選:B4、C【解析】由題設寫出的中垂線,求其與的交點即得圓心坐標,再應用兩點距離公式求半徑,即可得圓的方程.【詳解】因為點,在M上,所以圓心在的中垂線上由,解得,即圓心為,則半徑,所以M的方程為故選:C5、B【解析】確實新數列是等比數列及公比、首項后,由等比數列前項和公式計算,【詳解】由題意,新數列為,所以,,前項和為故選:B.6、D【解析】根據,且構成等比數列,利用“”求解.【詳解】設等差數列的公差為d,因為,且構成等比數列,所以,解得,故選:D7、D【解析】利用抽樣的性質求解【詳解】所有學生數為,所以所求概率為.故選:D8、C【解析】根據橢圓的定義判斷即可求解.【詳解】因為,所以橢圓M中,因為,,,,所以D,E在橢圓M上.故選:C9、C【解析】利用等差數列的前n項和公式求解.【詳解】∵是等差數列,,∴,得,∴.故選:C.10、B【解析】利用題設中的等式,把的表達式轉化成展開后,利用基本不等式求得的最小值【詳解】∵,,,∴=,當且僅當,即時等號成立故選:B11、D【解析】由復數的乘方運算求,再求模即可.【詳解】由題設,,故2.故選:D12、B【解析】由拋物線可得焦點坐標,結合點到直線的距離公式,即可求解.【詳解】由拋物線可得焦點坐標為,根據點到直線的距離公式,可得,即拋物線的焦點到直線的距離為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】根據個小矩形面積之和為1即可求出的值;根據頻率分布直方圖可以求出車速低于限速60km/h的頻率,從而可求出汽車有多少輛【詳解】由解得:這300輛汽車中車速低于限速60km/h的汽車有故答案為:;14、3【解析】根據等比中項列方程,結合基本不等式求得的最小值.【詳解】由題可得,則,當且僅當時等號成立.故答案為:15、【解析】確定,,利用點到平面的距離為,即可求得結論.【詳解】由題意,,,設與的夾角為,則所以點到平面的距離為故答案為:16、【解析】將個數據寫出來,可得出這組數據的眾數.【詳解】這個數據分別為、、、、、、、、、、、、、、,該組數據的眾數為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)如圖,以為軸,為軸,為軸建立空間直角坐標系,利用空間向量法分別求出和,再證明即可;(2)利用空間向量的數量積求出平面的法向量,結合求點到面距離的向量法即可得出結果.【小問1詳解】證明:如圖,以為軸,為軸,為軸,建立空間直角坐標系,則,,,,所以,,所以,故,所以;【小問2詳解】當時,,,,,則,,,設是平面的法向量,則由,解得,取,得,設點A到平面的距離為,則,所以點A到平面的距離為.18、(1)證明見解析;(2).【解析】(1)連接交于點,連接,要證明,只需證明平面即可;(2)以D為原點建系,分別求出平面與平面的法向量,再利用向量的夾角公式計算即可得到答案.【詳解】(1)證明:如圖,連接交于點,連接四邊形為正方形,,且為的中點又四邊形為菱形,平面平面又平面OAE.(2)解:如圖,建立空間直角坐標系,不妨設,則,,則由(1)得又平面平面,平面平面,平面ABCD,故,同理,設為平面的法向量,為平面的法向量,則故可取,同理故可取,所以設平面與平面所成的二面角為,則,所以平面與平面所成的二面角的正弦值為19、(1)分布列見解析(2)甲的試驗操作能力較強,理由見解析【解析】(1)設考生甲、乙正確加工完成零件的個數分別為、,則的可能取值有、、,的可能取值有、、、,且,計算出兩個隨機變量在不同取值下的概率,可得出這兩個隨機變量的概率分布列;(2)計算出、、、的值,比較、的大小,以及、的大小,由此可得出結論.【小問1詳解】解:設考生甲、乙正確加工完成零件的個數分別為、,則的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正確加工完成零件數的概率分布列如下表所示:,,,,所以,考生乙正確加工完成零件數的概率分布列如下表所示:【小問2詳解】解:,,,,所以,,從做對題的數學期望分析,兩人水平相當;從通過考查的概率分析,甲通過的可能性大,因此可以判斷甲的試驗操作能力較強.20、(1),中位數為64;(2).【解析】(1)由頻率和為1求參數a,根據中位數的性質,結合頻率直方圖求中位數.(2)首先由分層抽樣求6名同學的分布情況,再應用列舉法求概率.【詳解】(1)由題設,,可得,∴中位數應在之間,令中位數為,則,解得.∴該校同學平均每天體育鍛煉時間的中位數為64.(2)由題設,抽取6名同學中1名在,2名在,3名在,若1名在為,2名在為,3名在為,∴隨機抽取2名的可能情況有共15種,其中至少有一名在內的共12種,∴這2名同學中至少有一名每天體育鍛煉時間(單位:分鐘)在內的概率為.21、(1)x2=8y(2)16【解析】小問1:由拋物線的定義可求得動點M的軌跡方程;小問2:可知直線AB的方程為y=x+2,設點A(x1,y1)、B(x2,y2),將直線AB的方程與拋物線的方程聯立,求出y1+y2的值,利用拋物線的定義可求得|AB|的值.【小問1詳解】由題意點M的軌跡是以F為焦點,直線l為準線的拋物線,所以,則p=4,所以動點M的軌跡方程是x2=8y;【小問2詳解】由已知直線AB方程是y=x+2,設A(x1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150