河南省商丘市重點中學2024屆數學高二上期末質量檢測試題含解析_第1頁
河南省商丘市重點中學2024屆數學高二上期末質量檢測試題含解析_第2頁
河南省商丘市重點中學2024屆數學高二上期末質量檢測試題含解析_第3頁
河南省商丘市重點中學2024屆數學高二上期末質量檢測試題含解析_第4頁
河南省商丘市重點中學2024屆數學高二上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省商丘市重點中學2024屆數學高二上期末質量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點,的直線的斜率等于2,則的值為()A.0 B.1C.3 D.42.命題“對任何實數,都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得3.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形4.定義“等方差數列”:如果一個數列從第二項起,每一項的平方與它的前一項的平方的差都等于同一個常數,那么這個數列就叫作等方差數列,這個常數叫作該數列的方公差.設是由正數組成的等方差數列,且方公差為4,,則數列的前24項和為()A. B.3C. D.65.雙曲線的光學性質為:如圖①,從雙曲線右焦點發出的光線經雙曲線鏡面反射,反射光線的反向延長線經過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質.某“雙曲線新聞燈”的軸截面是雙曲線的一部分,如圖②,其方程為,為其左、右焦點,若從右焦點發出的光線經雙曲線上的點和點反射后,滿足,,則該雙曲線的離心率為()A. B.C. D.6.已知是拋物線上的點,F是拋物線C的焦點,若,則()A.1011 B.2020C.2021 D.20227.觀察,,,由歸納推理可得:若定義在上的函數滿足,記為的導函數,則=A. B.C. D.8.已知,是圓上的兩點,是直線上一點,若存在點,,,使得,則實數的取值范圍是()A. B.C. D.9.已知橢圓與直線交于A,B兩點,點為線段的中點,則a的值為()A. B.3C. D.10.數列,則是這個數列的第()A.項 B.項C.項 D.項11.已知橢圓C的焦點為,過F2的直線與C交于A,B兩點.若,,則C的方程為A. B.C. D.12.若向量,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數列滿足,則_______________.14.如圖,正方體的棱長為1,C、D分別是兩條棱的中點,A、B、M是頂點,那么點M到截面ABCD的距離是____________.15.已知函數則的值為.____16.曲線在處的切線方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)=x﹣lnx(1)求曲線y=f(x)在點(1,f(1))處的切線方程;(2)求函數f(x)的極值.18.(12分)如圖,四棱錐中,平面、底面為菱形,為的中點.(1)證明:平面;(2)設,菱形的面積為,求二面角的余弦值.19.(12分)如圖,四棱錐P-ABCD的底面為正方形,PD⊥底面ABCD,PD=AD=2,E,F分別為AD和PB的中點.請用空間向量知識解答下列問題:(1)求證:EF//平面PDC;(2)求平面EFC與平面PBD夾角的余弦值.20.(12分)某校高二年級全體學生參加了一次數學測試,學校利用簡單隨機抽樣的方法從甲班、乙班各抽取五名同學的數學測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數據的中位數相等且平均數也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學中隨機抽出兩名,求此兩人都來自甲班的概率.21.(12分)若存在常數,使得對任意,,均有,則稱為有界集合,同時稱為集合的上界.(1)設,,試判斷A、B是否為有界集合,并說明理由;(2)已知常數,若函數為有界集合,求集合的上界最小值.22.(10分)設是首項為的等差數列的前項和,是首項為1的等比數列的前項和,為數列的前項和,為數列的前項和,已知.(1)若,求;(2)若,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用斜率公式即求.【詳解】由題可得,∴.故選:A2、B【解析】可將原命題變成全稱命題形式,而全稱命題的否定為特稱命題,即可選出答案.【詳解】命題“對任何實數,都有”,可寫成:,使得,此命題為全稱命題,故其否定形式為:,使得.故選:B.3、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C4、C【解析】根據等方差數列的定義,結合等差數列的通項公式,運用裂項相消法進行求解即可.【詳解】因為是方公差為4的等方差數列,所以,,∴,∴,∴,故選:C5、C【解析】連接,已知條件為,,設,由雙曲線定義表示出,用已知正切值求出,再由雙曲線定義得,這樣可由勾股定理求出(用表示),然后在中,應用勾股定理得出的關系,求得離心率【詳解】易知共線,共線,如圖,設,,則,由得,,又,所以,,所以,所以,由得,因為,故解得,則,在中,,即,所以故選:C6、C【解析】結合向量坐標運算以及拋物線的定義求得正確答案.【詳解】設,因為是拋物線上的點,F是拋物線C的焦點,所以,準線為:,因此,所以,即,由拋物線的定義可得,所以故選:C7、D【解析】由歸納推理可知偶函數的導數是奇函數,因為是偶函數,則是奇函數,所以,應選答案D8、B【解析】確定在以為直徑的圓上,,根據均值不等式得到圓上的點到的最大距離為,得到,解得答案.【詳解】,故在以為直徑的圓上,設中點為,則,圓上的點到的最大距離為,,當時等號成立.直線到原點的距離為,故.故選:B.9、A【解析】先聯立直線和橢圓的方程,結合中點公式及點可求a的值.【詳解】設,聯立,得,,因為點為線段的中點,所以,即,解得,因為,所以.故選:A.10、A【解析】根據數列的規律,求出通項公式,進而求出是這個數列的第幾項【詳解】數列為,故通項公式為,是這個數列的第項.故選:A.11、B【解析】由已知可設,則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設,則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設,則,由橢圓的定義有.在和中,由余弦定理得,又互補,,兩式消去,得,解得.所求橢圓方程為,故選B【點睛】本題考查橢圓標準方程及其簡單性質,考查數形結合思想、轉化與化歸的能力,很好的落實了直觀想象、邏輯推理等數學素養12、A【解析】根據向量垂直得到方程,求出的值.【詳解】由題意得:,解得:.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用來求得,進而求得正確答案.【詳解】,,是數列是首項為,公差為的等差數列,所以,所以.故答案為:14、【解析】由題意建立空間直角坐標系,然后結合點面距離公式即可求得點M到截面ABCD的距離.【詳解】建立如圖所示的空間直角坐標系,可得A(0,0,0),B(1,1,0),D(0,,1),M(0,1,0),∴(0,1,0),(1,1,0),(0,,1),設(x,y,z)為平面ABCD的法向量,則,取y=﹣2,可得x=2,z=1,∴(2,﹣2,1),∴M到截面ABCD的距離d故答案為.【點睛】本題主要考查空間直角坐標系及其應用,點面距離的計算等知識,意在考查學生的轉化能力和計算求解能力.15、-1【解析】詳解】試題分析:由題意,得,所以,解得,所以考點:導數的運算16、【解析】先求出函數的導函數,然后結合導數的幾何意義求解即可.【詳解】解:由,得,則,即當時,,所以切線方程為:,故答案為:.【點睛】本題考查了曲線在某點處的切線方程的求法,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)極小值為,無極大值【解析】(1)求出函數的導函數,再根據導數的幾何意義即可求出切線方程;(2)根據導數的符號求出函數的單調區間,再根據極值的定義即可得出答案.【小問1詳解】解:,則,,即切線的斜率為0,所以曲線y=f(x)在點(1,f(1))處曲線的切線方程為;小問2詳解】當時,,當時,,所以函數在上遞減,在上遞增,函數的極小值為,無極大值.18、(1)證明見解析;(2).【解析】(1)連接交于點,連接,則,利用線面平行的判定定理,即可得證;(2)根據題意,求得菱形的邊長,取中點,可證,如圖建系,求得點坐標及坐標,即可求得平面的法向量,根據平面PAD,可求得面的法向量,利用空間向量的夾角公式,即可求得答案.【詳解】(1)連接交于點,連接,則、E分別為、的中點,所以,又平面平面所以平面(2)由菱形的面積為,,易得菱形邊長為,取中點,連接,因為,所以,以點為原點,以方向為軸,方向為軸,方向為軸,建立如圖所示坐標系.則所以設平面的法向量,由得,令,則所以一個法向量,因為,,所以平面PAD,所以平面的一個法向量所以,又二面角為銳二面角,所以二面角的余弦值為【點睛】解題的關鍵是熟練掌握證明平行的定理,證明線面平行時,常用中位線法和平行四邊形法來證明;利用空間向量求解二面角為常考題型,步驟為建系、求點坐標、求所需向量坐標、求法向量、利用夾角公式求解,屬基礎題.19、(1)證明見解析(2)【解析】(1)以為原點,以所在的直線分別為軸,建立空間直角坐標系,然后求出平面的法向量,再求出,判斷是否與法垂直即可,(2)分別求出平面EFC與平面PBD的法向量,利用向量夾角公式求解即可【小問1詳解】因PD⊥底面ABCD,平面,所以,因為四邊形為正方形,所以,所以兩兩垂直,所以以為原點,以所在的直線分別為軸,建立空間直角坐標系,如圖所示,則,因為E,F分別為AD和PB的中點,所以,所以,因為,所以平面,所以平面的一個法向量為,因為,所以,因為平面,所以EF//平面PDC;【小問2詳解】設平面的法向量為,因為,,所以,令,則,設平面的法向量為,因為,所以,令,則,設平面EFC與平面PBD夾角為,,則,所以平面EFC與平面PBD夾角的余弦值為20、(1),(2)【解析】(1)根據莖葉圖得甲班中位數為,由此能求出,根據由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學中隨機抽出兩名,用列舉法寫出基本事件總數,再利用古典概型的概率計算公式即可求解.【小問1詳解】根據莖葉圖可知1班中位數為86,則,又∵,且故【小問2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學共有,,,,,共有6組基本事件,且每組出現都是等可能的記:“從86分以上(不含86分)的同學中隨機抽出兩名,兩人都來自甲班”為事件M,事件M包括:共1個基本事件,由古典概型的計算概率的公式知∴所以兩人都來自甲班的概率為21、(1)A不是有界集合,B是有界集合,理由見解析(2)【解析】(1)解不等式求得集合A;由,根據指數函數的性質求得集合B,由此可得結論;(2)由函數,得出函數單調遞減,即有,分和兩種情況討論,求得集合的上界,再由集合的上界函數的單調性可求得集合的上界的最小值.【小問1詳解】解:由得,即,,對任意一個,都有一個,故不是有界集合;,,,,是有界集合,上界為1;【小問2詳解】解:,因為,所以函數單調遞減,,因為函數為有界集合,所以分兩種情況討論:當,即時,集合的上界,當時,不等式為;當時,不等式為;當時,不等式為,即時,集合的上界,當,即時,集合的上界,同上解不等式得的解為,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論