廣東省越秀外國語學校2024屆數學高二上期末學業水平測試試題含解析_第1頁
廣東省越秀外國語學校2024屆數學高二上期末學業水平測試試題含解析_第2頁
廣東省越秀外國語學校2024屆數學高二上期末學業水平測試試題含解析_第3頁
廣東省越秀外國語學校2024屆數學高二上期末學業水平測試試題含解析_第4頁
廣東省越秀外國語學校2024屆數學高二上期末學業水平測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省越秀外國語學校2024屆數學高二上期末學業水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,為雙曲線:的焦點,為,(其中為雙曲線半焦距),與雙曲線的交點,且有,則該雙曲線的離心率為()A. B.C. D.2.雙曲線的離心率的取值范圍為,則實數的取值范圍為()A. B.C. D.3.的展開式中的系數是()A. B.C. D.4.已知空間向量,,,若,,共面,則m+2t=()A.-1 B.0C.1 D.-65.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標準方程為()A.=1 B.=1C.=1 D.=16.若雙曲線的離心率為3,則的最小值為()A. B.1C. D.27.直線經過兩個定點,,則直線傾斜角大小是()A. B.C. D.8.丹麥數學家琴生(Jensen)是世紀對數學分析做出卓越貢獻的巨人,特別是在函數的凸凹性與不等式方面留下了很多寶貴的成果.設函數在上的導函數為,在上的導函數為,在上恒成立,則稱函數在上為“凹函數”.則下列函數在上是“凹函數”的是()A. B.C. D.9.若,則與的大小關系是()A. B.C. D.不能確定10.已知點,若直線與線段沒有公共點,則的取值范圍是()A. B.C. D.11.執行如圖所示的程序框圖,輸出的結果為()A.4 B.9C.23 D.6412.已知拋物線,過拋物線的焦點作軸的垂線,與拋物線交于、兩點,點的坐標為,且為直角三角形,則以直線為準線的拋物線的標準方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題,恒成立是假命題,則實數a取值范圍是________________14.已知向量,,若,則實數=________.15.已知為拋物線:的焦點,為拋物線上在第一象限的點.若為的中點,為拋物線的頂點,則直線斜率的最大值為______.16.如圖,在等腰直角△ABC中,,點P是邊AB上異于A、B的一點,光線從點P出發,經BC、CA反射后又回到原點P.若光線QR經過△ABC的內心,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為的正方體中,為中點(1)求二面角的大小;(2)探究線段上是否存在點,使得平面?若存在,確定點的位置;若不存在,說明理由18.(12分)已知拋物線的頂點是坐標原點,焦點在軸的正半軸上,是拋物線上的點,點到焦點的距離為1,且到軸的距離是(1)求拋物線的標準方程;(2)假設直線通過點,與拋物線相交于,兩點,且,求直線的方程19.(12分)區塊鏈技術被認為是繼蒸汽機、電力、互聯網之后,下一代顛覆性的核心技術區塊鏈作為構造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區塊鏈企業數量逐年增長,居世界前列現收集我國近5年區塊鏈企業總數量相關數據,如表年份20152016201720182019編號x12345企業總數量y(單位:千個)2.1563.7278.30524.27936.224注:參考數據,,,(其中).附:樣本的最小二乘法估計公式為,(1)根據表中數據判斷,與(其中,為自然對數的底數),哪一個回歸方程類型適宜預測未來幾年我國區塊鏈企業總數量?(給出結果即可,不必說明理由)(2)根據(1)的結果,求y關于x的回歸方程;(3)為了促進公司間的合作與發展,區塊鏈聯合總部決定進行一次信息化技術比賽,邀請甲、乙、丙三家區塊鏈公司參賽比賽規則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結束,該公司就獲得此次信息化比賽的“優勝公司”,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,若首場由甲乙比賽,則求甲公司獲得“優勝公司”的概率.20.(12分)如圖,在三棱錐中,側面PAB是邊長為4的正三角形且與底面ABC垂直,點D,E,F,H分別是棱PA,AB,BC,PC的中點(1)若點G在棱BC上,且BG=3GC,求證:平面∥平面DHG;(2)若AC=2,,求二面角的余弦值21.(12分)已知,以點為圓心圓被軸截得的弦長為.(1)求圓的方程;(2)若過點的直線與圓相切,求直線的方程.22.(10分)設P是拋物線上一個動點,F為拋物線的焦點.(1)若點P到直線距離為,求的最小值;(2)若,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據求得的關系,結合雙曲線的定義以及勾股定理,即可求得的等量關系,再求離心率即可.【詳解】根據題意,連接,作圖如下:顯然為直角三角形,又,又點在雙曲線上,故可得,解得,由勾股定理可得:,即,即,,故雙曲線的離心率為.故選:B.2、C【解析】分析可知,利用雙曲線的離心率公式可得出關于的不等式,即可解得實數的取值范圍.【詳解】由題意有,,則,解得:故選:C.3、B【解析】根據二項式定理求出答案即可.【詳解】的展開式中的系數是故選:B4、D【解析】根據向量共面列方程,化簡求得.【詳解】,所以不共線,由于,,共面,所以存在,使,即,,,,,即.故選:D5、D【解析】根據雙曲線的性質求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.6、D【解析】由雙曲線的離心率為3和,求得,化簡,結合基本不等式,即可求解.【詳解】由題意,雙曲線的離心率為3,即,即,又由,可得,所以,當且僅當,即時,“”成立.故選:D【點睛】使用基本不等式解答問題的策略:1、利用基本不等式求最值時,要注意三點:一是各項為正;二是尋求定值;三是考慮等號成立的條件;2、若多次使用基本不等式時,容易忽視等號的條件的一致性,導致錯解;3、巧用“拆”“拼”“湊”:在使用基本不等式時,要特別注意“拆”“拼”“湊”等技巧,使其滿足基本不等式中的“正、定、等”的條件.7、A【解析】由兩點坐標求出斜率,再得傾斜角【詳解】由已知直線的斜率為,所以傾斜角為故選:A8、B【解析】根據“凹函數”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B9、B【解析】由題知,進而研究的符號即可得答案.詳解】解:,所以,即.故選:B10、A【解析】分別求出,即可得到答案.【詳解】直線經過定點.因為,所以,所以要使直線與線段沒有公共點,只需:,即.所以的取值范圍是.故選:A11、C【解析】直接按程序框圖運行即可求出結果.【詳解】初始化數值,,第一次執行循環體,,,1≥4不成立;第二次執行循環體,,,2≥4不成立;第三次執行循環體,,,3≥4不成立;第四次執行循環體,,,4≥4成立;輸出故選:C12、B【解析】設點位于第一象限,求得直線的方程,可得出點的坐標,由拋物線的對稱性可得出,進而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準線的拋物線的標準方程.【詳解】設點位于第一象限,直線的方程為,聯立,可得,所以,點.為等腰直角三角形,由拋物線的對稱性可得出,則直線的斜率為,即,解得.因此,以直線為準線的拋物線的標準方程為.故選:B.【點睛】本題考查拋物線標準方程的求解,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由命題為假命題可得命題為真命題,由此可求a范圍.【詳解】∵命題,恒成立是假命題,∴,,∴,,又函數在為減函數,∴,∴,∴實數a的取值范圍是,故答案為:.14、【解析】由可求得【詳解】因為,所以,故答案為:【點睛】本題考查向量垂直的坐標表示,屬于基礎題15、1【解析】由題意,可得,設,,,根據是線段的中點,求出的坐標,可得直線的斜率,利用基本不等式即可得結論【詳解】解:由題意,可得,設,,,,是線段的中點,則,,,當且僅當時取等號,直線的斜率的最大值為1故答案為:116、【解析】以為坐標原點建立空間直角坐標系,設出點的坐標,求得△的內心坐標,根據△內心以及關于的對稱點三點共線,即可求得點的坐標,則問題得解.【詳解】根據題意,以為坐標原點,建立平面直角坐標系,設點關于直線的對稱點為,關于軸的對稱點為,如下所示:則,不妨設,則直線的方程為,設點坐標為,則,且,整理得,解得,即點,又;設△的內切圓圓心為,則由等面積法可得,解得;故其內心坐標為,由及△的內心三點共線,即,整理得,解得(舍)或,故.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)點為線段上靠近點的三等分點【解析】(1)建立空間直角坐標系,分別寫出點的坐標,求出兩個平面的法向量代入公式求解即可;(2)假設存在,設,利用相等向量求出坐標,利用線面平行的向量法代入公式計算即可.【小問1詳解】如下圖所示,以為原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系,則,,,,,,.所以,設平面的法向量,所以,即,令,則,,所以,連接,因為,,,平面,平面,平面,所以平面,所以為平面的一個法向量,所以,由圖知,二面角為銳二面角,所以二面角的大小為【小問2詳解】假設在線段上存在點,使得平面,設,,,因為平面,所以,即所以,即解得所以在線段上存在點,使得平面,此時點為線段上靠近點的三等分點18、(1);(2)【解析】(1)根據拋物線的定義,結合到焦點、軸的距離求,寫出拋物線方程.(2)直線的斜率不存在易得與不垂直與題設矛盾,設直線方程聯立拋物線方程,應用韋達定理求,,進而求,由題設向量垂直的坐標表示有求直線方程即可.【詳解】(1)由己知,可設拋物線的方程為,又到焦點的距離是1,∴點到準線的距離是1,又到軸的距離是,∴,解得,則拋物線方程是(2)假設直線的斜率不存在,則直線的方程為,與聯立可得交點、的坐標分別為,,易得,可知直線與直線不垂直,不滿足題意,故假設不成立,∴直線的斜率存在.設直線為,整理得,設,,聯立直線與拋物線的方程得,消去,并整理得,于是,,∴,又,因此,即,∴,解得或當時,直線的方程是,不滿足,舍去當時,直線的方程是,即,∴直線的方程是19、(1)(2)(3)【解析】(1)根據表中數據判斷y關于x的回歸方程為非線性方程;(2)令,將y關于x的非線性關系,轉化為z關于x的線性關系,利用最小二乘法求解;(3)利用相互獨立事件的概率相乘求求解;【小問1詳解】根據表中數據適宜預測未來幾年我國區塊鏈企業總數量.【小問2詳解】,,令,則,,由公式計算可知,即,即所以y關于x的回歸方程為【小問3詳解】設甲公司獲得“優勝公司”為事件.則所以甲公司獲得“優勝公司”的概率為.20、(1)證明見解析;(2).【解析】(1)由中位線的性質可得、、,再由線面平行的判定可證平面PEF、平面PEF,最后根據面面平行的判定證明結論.(2)應用勾股定理、等邊三角形的性質、面面和線面垂直的性質可證、、兩兩垂直,構建空間直角坐標系,求面BPC、面PCA的法向量,再應用空間向量夾角的坐標表示求二面角的余弦值.【小問1詳解】因為D,H分別是PA,PC的中點,所以因為E,F分別是AB,BC的中點,所以,綜上,,又平面PEF,平面PEF,所以平面PEF由題意,G是CF的中點,又H是PC的中點,所以,又平面PEF,平面PEF,所以平面PEF由,HG,平面DHG,所以平面平面DHG【小問2詳解】在△ABC中,AB=4,AC=2,,所以,所以,又,則因為△PAB為等邊三角形,點E為AB的中點,所以,又平面平面ABC,平面平面ABC=AB,所以平面ABC,面ABC,故綜上,以E為坐標原點,以EB,EF,EP所在直線分別為x,y,z軸,建立空間直角坐標系,如圖所示,有,,,,則,,設平面BPC的法向量為,則,令,則設平面PCA的法向量為,則,令,則所以.由圖知,二面角的平面角為銳角,所以二面角的余弦值為21、(1)(2)或【解析】(1)根據垂徑定理,可直接計算出圓的半徑;(2)根據直線的斜率是否存在分類討論,斜率不存在時,可得到直線方程為的直線滿足題意,斜率存在時,利用直線與圓相切,即到直線的距離等于半徑,然后解出關于斜率的方程即可.【小問1詳解】不妨設圓的半徑為,根據垂徑定理,可得:解得:則圓的方程為:【小問2詳解】當直線的斜率不存在時,則有:故此時直線與圓相切,滿足題意當直線的斜率存在時,不妨設直線的斜率為,點的直線的距離為直線的方程為:則有:解得:,此時直線的方程為:綜上可得,直線的方程為:或22、(1);(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論