




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
安徽六安市第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中國,周朝時期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并證明此定理的為公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他們用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和.若一個直角三角形的斜邊長等于則這個直角三角形周長的最大值為()A. B.C. D.2.在平面上給定相異兩點,設(shè)點在同一平面上且滿足,當(dāng)且時,點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.3.已知雙曲線的右焦點為F,雙曲線C的右支上有一點P滿是(點O為坐標(biāo)原點),那么雙曲線C的離心率為()A. B.C. D.4.已知隨機(jī)變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.765.已知拋物線的焦點為,拋物線的焦點為,點在上,且,則直線的斜率為A. B.C. D.6.已知直線過點,,則該直線的傾斜角是()A. B.C. D.7.函數(shù),的最小值為()A.2 B.3C. D.8.的內(nèi)角A,B,C的對邊分別為a,b,c,若,則一定是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形9.繞著它的一邊旋轉(zhuǎn)一周得到的幾何體可能是()A.圓臺 B.圓臺或兩個圓錐的組合體C.圓錐或兩個圓錐的組合體 D.圓柱10.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機(jī)編號,則抽取的42人中,編號落入?yún)^(qū)間[481,720]的人數(shù)為A.11 B.12C.13 D.1411.已知拋物線的焦點為,拋物線上的兩點,均在第一象限,且,,,則直線的斜率為()A.1 B.C. D.12.如圖為學(xué)生做手工時畫的橢圓(其中網(wǎng)格是由邊長為1的正方形組成),它們的離心率分別為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,分別是雙曲線的左、右焦點,P是其一條漸近線上的一點,且以為直徑的圓經(jīng)過點P,則的面積為___________.14.銀行一年定期的存款的利率為p,如果將a元存入銀行一年定期,到期后將本利再存一年定期,到期后再存一年定期……,則10年后到期本利共________元15.在正方體中,,,P,F(xiàn)分別是線段,的中點,則點P到直線EF的距離是___________.16.若方程表示的曲線是圓,則實數(shù)的k取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,點是曲線上的動點(點在軸左側(cè)),以點為頂點作等腰梯形,使點在此曲線上,點在軸上.設(shè),等腰梯的面積為.(1)寫出函數(shù)的解析式,并求出函數(shù)的定義域;(2)當(dāng)為何值時,等腰梯形的面積最大?求出最大面積.18.(12分)在①;②,這兩個條件中任選一個,補(bǔ)充在下面問題中,然后解答補(bǔ)充完整的題目.在中,內(nèi)角A,B,C的對邊分別為a,b,c,設(shè)的面積為S,已知_________.(1)求的值;(2)若,求值.注:如果選擇多個條件分別解答,按第一個解答計分.19.(12分)四棱錐,底面為矩形,面,且,點在線段上,且面.(1)求線段的長;(2)對于(1)中的,求直線與面所成角的正弦值.20.(12分)在三角形ABC中,三個頂點的坐標(biāo)分別為,,,且D為AC的中點.(1)求三角形ABC的外接圓M方程;(2)求直線BD與外接圓M相交產(chǎn)生的相交弦的長度.21.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當(dāng)點與點關(guān)于軸對稱時的面積是否達(dá)到最大?并說明理由.22.(10分)已知圓的圓心在直線上,且圓經(jīng)過點與點.(1)求圓的方程;(2)過點作圓的切線,求切線所在的直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】設(shè)直角三角形的兩條直角邊邊長分別為,則,根據(jù)基本不等式求出的最大值后,可得三角形周長的最大值.【詳解】設(shè)直角三角形的兩條直角邊邊長分別為,則.因為,所以,所以,當(dāng)且僅當(dāng)時,等號成立.故這個直角三角形周長的最大值為故選:C2、C【解析】先求動點的軌跡方程,再根據(jù)面積的最大值求得,根據(jù)的面積最小值求,由此可求雙曲線的離心率.【詳解】設(shè),,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當(dāng)位于圓的最高點時的面積最大,所以,解得;當(dāng)位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.3、D【解析】分析焦點三角形即可【詳解】如圖,設(shè)左焦點為,因為,所以不妨設(shè),則離心率故選:D4、A【解析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.【詳解】因隨機(jī)變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對稱性得:,所以的值為0.24.故選:A5、B【解析】根據(jù)拋物線的定義,求得p的值,即可得拋物線,的標(biāo)準(zhǔn)方程,求得拋物線的焦點坐標(biāo)后,再根據(jù)斜率公式求解.【詳解】因為,所以,解得,所以直線的斜率為.故選B.【點睛】本題考查了拋物線的定義的應(yīng)用,考查了拋物線的簡單性質(zhì),涉及了直線的斜率公式;拋物線上的點到焦點的距離等于其到準(zhǔn)線的距離;解題過程中注意焦點的位置.6、C【解析】根據(jù)直線的斜率公式即可求得答案.【詳解】設(shè)該直線的傾斜角為,該直線的斜率,即.故選:C7、B【解析】求導(dǎo)函數(shù),分析單調(diào)性即可求解最小值【詳解】由,得,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增∴當(dāng)時,取得最小值,且最小值為故選:B.8、B【解析】利用余弦定理化角為邊,從而可得出答案.【詳解】解:因為,所以,則,所以,所以是等腰三角形.故選:B.9、C【解析】討論是按直角邊旋轉(zhuǎn)還是按斜邊旋轉(zhuǎn)【詳解】按直角邊選擇可得下圖圓錐:如果按直角邊旋轉(zhuǎn)可得下圖的兩個圓錐的組合體:故選:C10、B【解析】使用系統(tǒng)抽樣方法,從840人中抽取42人,即從20人抽取1人∴從編號1~480的人中,恰好抽取480/20=24人,接著從編號481~720共240人中抽取240/20=12人考點:系統(tǒng)抽樣11、C【解析】作垂直準(zhǔn)線于,垂直準(zhǔn)線于,作于,結(jié)合拋物線定義得出斜率為可求.【詳解】如圖:作垂直準(zhǔn)線于,垂直準(zhǔn)線于,作于,因為,,,由拋物線的定義可知:,,,所以,直線斜率為:.故選:C.12、D【解析】根據(jù)圖知分別得到橢圓、、的半長軸和半短軸,再由求解比較即可.【詳解】由圖知橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,橢圓的半長軸和半短軸分別為:,所以,,,所以,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先得出漸近線方程和圓的方程,然后解出點P的縱坐標(biāo),進(jìn)而求出面積.【詳解】由題意,漸近線方程為:,,圓的方程為:,聯(lián)立:,所以.故答案為:.14、【解析】根據(jù)題意求出每年底的本利和,歸納即可.【詳解】由題意知,第一年本利和為:元,第二年本利和為:元,第三年本利和為:元,以此類推,第十年本利和為:元,故答案:15、【解析】以A為坐標(biāo)原點建立空間直角坐標(biāo)系,利用向量法即可求解點P到直線EF的距離.【詳解】解:如圖,以A為坐標(biāo)原點,,,的方向分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系,因為,所以,,,所以,,所以點P到直線EF的距離.故答案為:.16、【解析】根據(jù)二元二次方程表示圓的條件求解【詳解】由題意,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)當(dāng)時取到最大值,【解析】(1)設(shè)點,則根據(jù)題意得,,故;(2)令,研究函數(shù)的單調(diào)性,進(jìn)而得的最值,進(jìn)而得的最大值.【詳解】解:(1)根據(jù)題意,設(shè)點,由是曲線上的動點得:,由于橢圓與軸交點為,故,所以即:(2)結(jié)合(1),對兩邊平方得:,令,則,所以當(dāng)時,,當(dāng)時,,所以在區(qū)間單調(diào)遞增,在上單調(diào)遞減,所以在處取到最大值,,所以當(dāng)時,取到最大值,.【點睛】本題考查利用導(dǎo)數(shù)研究實際問題,考查數(shù)學(xué)應(yīng)用能力與計算能力,是中檔題.18、條件選擇見解析;(1);(2).【解析】(1)若選擇①,先利用正弦定理進(jìn)行邊角互化,再結(jié)合正余弦的和差角公式化簡可得,得出;若選擇②,利用余弦定理及面積公式可得,得;(2)由(1)可知,由及得,,再根據(jù)余弦定理求解的值.【詳解】解析:(1)選擇條件①.,,得,選擇條件②,由余弦定理及三角形的面積公式可得:,得.(2)由得,∵,,∴,解得.由余弦定理得:.【點睛】本題考查解三角形,難度一般.解答的關(guān)鍵在于根據(jù)題目中邊角關(guān)系,運(yùn)用正弦定理進(jìn)行邊角互化、再根據(jù)兩角和與差的正弦公式進(jìn)行化簡是關(guān)鍵.一般地,當(dāng)?shù)仁街泻衋,b,c的關(guān)系式,且全為二次時,可利用余弦定理進(jìn)行化簡;當(dāng)含有內(nèi)角的正弦值及邊的關(guān)系,且為一次式時,可考慮采用正弦定理進(jìn)行邊角互化.19、(1)1(2)【解析】(1)根據(jù)線面垂直得到,再由相似比得方程可求解;(2)建立空間直角坐標(biāo)系,求平面的法向量,運(yùn)用夾角公式先求線面角的余弦值,再轉(zhuǎn)化為正弦值即可.小問1詳解】面,在矩形中,易得:;【小問2詳解】如四建立空間直角坐標(biāo)系:則,,由題意可知:為平面的一個法向量,,,直線與面所成角的正弦值為.20、(1);(2).【解析】(1)根據(jù)題意,結(jié)合直角三角形外接圓的圓心為斜邊的中點,即可求解;(2)根據(jù)題意,結(jié)合點到直線的距離,以及弦長公式,即可求解.【小問1詳解】根據(jù)題意,易知是以BC為斜邊的直角三角形,故外接圓圓心是B,C的中點,半徑為BC長度的一半為,故三角形ABC的外接圓M方程為.【小問2詳解】因為D為AC的中點,所以易求.故直線BD的方程為,圓心到直線的距離,故相交弦的長度為.21、(1);(2);(3)當(dāng)點與點關(guān)于軸對稱時,的面積達(dá)到最大,理由見解析.【解析】(1)設(shè),可得出,,將點的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設(shè)直線的方程為,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得,結(jié)合韋達(dá)定理可求得的值,即可得出直線的方程;(3)設(shè)與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當(dāng)點為直線與橢圓的切點時,的面積達(dá)到最大,求出直線與橢圓的切點坐標(biāo),可得出結(jié)論.【小問1詳解】解:因為,設(shè),則,,所以,橢圓的方程可表示為,將點的坐標(biāo)代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設(shè)線段的中點為,因為,則軸,故直線、的傾斜角互補(bǔ),易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設(shè)點、,則,,,不合乎題意.所以,直線的斜率存在,設(shè)直線的方程為,設(shè)點、,聯(lián)立,可得,,由韋達(dá)定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設(shè)與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當(dāng)點為直線與橢圓的切點時,此時的面積取最大值,當(dāng)時,方程(*)為,解得,此時,即點.此時,點與點關(guān)于軸對稱,因此,當(dāng)點與點關(guān)于軸對稱時,的面積達(dá)到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值22、(1);(2)或.【解析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生活中考語文作文
- 統(tǒng)編版語文六年級下冊綜合性學(xué)習(xí)《難忘小學(xué)生活》精美課件
- 6-3 ROM的應(yīng)用電子課件教學(xué)版
- 什么告訴我初二語文作文
- 難忘的一首歌初一語文作文
- 旅游的初一語文作文開頭
- 潛水裝備在深海地質(zhì)取樣的重要性考核試卷
- 紙張的可持續(xù)采購策略考核試卷
- 家用器具行業(yè)綠色制造與循環(huán)經(jīng)濟(jì)考核試卷
- 精神疾病康復(fù)護(hù)理技能提升考核試卷
- 第13課 《精衛(wèi)填海》第一課時(說課稿)-2024-2025學(xué)年統(tǒng)編版語文四年級上冊
- 2025人教版高中物理必修一學(xué)考知識點復(fù)習(xí)指導(dǎo)課件
- 初級家政服務(wù)員近年考試真題題庫(含真題、典型題)
- DB41T 2113-2021 通航水域內(nèi)河電子航道圖制作規(guī)程
- 書法測評基礎(chǔ)理論知識單選題100道及答案解析
- 河南省多校聯(lián)考2023-2024學(xué)年高一下學(xué)期4月期中物理試題
- Endat編碼器在AX5000系列伺服上使用說明
- 第十一章-新聞事業(yè)管理-《新聞學(xué)概論》課件
- 電梯維保服務(wù)投標(biāo)方案
- 綠化養(yǎng)護(hù)勞務(wù)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 湘潭、成都工廠VDA63-2023審核員培訓(xùn)考核附有答案
評論
0/150
提交評論