




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建龍巖市2023年高二數學第一學期期末預測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,已知點,,,,直線AP,BP相交于點P,且它們斜率之積是.當時,的最小值為()A. B.C. D.2.設,則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.設為拋物線焦點,直線,點為上任意一點,過點作于,則()A.3 B.4C.2 D.不能確定4.已知等差數列中,、是的兩根,則()A B.C. D.5.第24屆冬季奧林匹克運動會,將于2022年2月4日在北京市和張家口市聯合舉行.北京將成為奧運史上第一個舉辦過夏季奧林匹克運動會和冬季奧林匹克運動會的城市.根據安排,國家體育場(鳥巢)成為北京冬奧會開、閉幕式的場館.國家體育場“鳥巢”的鋼結構鳥瞰圖如圖所示,內外兩圈的鋼骨架是兩個“相似橢圓”(離心率相同的兩個橢圓我們稱為“相似橢圓”).如圖,由外層橢圓長軸一端點A和短軸一端點B分別向內層橢圓引切線AC,BD,若兩切線斜率之積等于,則橢圓的離心率為()A. B.C. D.6.已知點,Q是圓上的動點,則線段長的最小值為()A.3 B.4C.5 D.67.若命題“,”是假命題,則實數的取值范圍為()A. B.C. D.8.我國古代的數學名著《九章算術》中有“衰分問題”:今有女子善織,日自倍,五日織五尺,問次日織幾問?其意為:一女子每天織布的尺數是前一天的2倍,5天共織布5尺,請問第二天織布的尺數是()A. B.C. D.9.劉徽是一個偉大的數學家,他的杰作《九章算術注》和《海島算經》是中國寶貴的數學遺產,他所提出的割圓術可以估算圓周率π,理論上能把π的值計算到任意精度.割圓術的第一步是求圓的內接正六邊形的面積.若在圓內隨機取一點,則此點取自該圓內接正六邊形的概率是()A. B.C. D.10.已知點是橢圓方程上的動點,、是直線上的兩個動點,且滿足,則()A.存在實數使為等腰直角三角形的點僅有一個B.存在實數使為等腰直角三角形的點僅有兩個C.存在實數使為等腰直角三角形的點僅有三個D.存在實數使為等腰直角三角形的點有無數個11.饕餮紋是青銅器上常見的花紋之一,最早見于長江中下游地區的良渚文化陶器和玉器上,盛行于商代至西周早期.將青銅器中的饕餮紋的一部分畫到方格紙上,如圖所示,每個小方格的邊長為一個單位長度,有一點從點出發,每次向右或向下跳一個單位長度,且向右或向下跳是等可能的,那么點經過3次跳動后恰好是沿著饕餮紋的路線到達點的概率為()A. B.C. D.12.已知拋物線的焦點為,點為拋物線上一點,點,則的最小值為()A. B.2C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.一個質地均勻的正四面體,其四個面涂有不同的顏色,拋擲這個正四面體一次,觀察它與地面接觸的顏色得到樣本空間{紅,黃,藍,綠},設事件{紅,黃},事件{紅,藍},事件{黃,綠},則下列判斷:①E與F是互斥事件;②E與F是獨立事件;③F與G是對立事件;④F與G是獨立事件.其中正確判斷的序號是______(請寫出所有正確判斷的序號)14.某企業有4個分廠,新培訓了一批6名技術人員,將這6名技術人員分配到各分廠,要求每個分廠至少1人,則不同的分配方案種數為________.15.如圖,橢圓的左、右焦點分別為,過橢圓上的點作軸的垂線,垂足為,若四邊形為菱形,則該橢圓的離心率為_________.16.已知曲線在處的切線方程為,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當點與點關于軸對稱時的面積是否達到最大?并說明理由.18.(12分)已知函數(1)求函數的圖象在點處的切線方程;(2)求函數的極值19.(12分)從橢圓上一點P向x軸作垂線,垂足恰為左焦點,A是橢圓C與x軸正半軸的交點,直線AP的斜率為,若橢圓長軸長為8(1)求橢圓C的方程;(2)點Q為橢圓上任意一點,求面積的最大值20.(12分)已知橢圓的離心率為,橢圓的短軸端點與雙曲線的焦點重合,過點的直線與橢圓相交于、兩點.(1)求橢圓的方程;(2)若以為直徑的圓過坐標原點,求的值.21.(12分)已知橢圓()的左、右焦點為,,,離心率為(1)求橢圓的標準方程(2)的左頂點為,過右焦點的直線交橢圓于,兩點,記直線,,的斜率分別為,,,求證:22.(10分)在空間直角坐標系Oxyz中,O為原點,已知點,,,設向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實數k的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設出點坐標,求得、所在直線的斜率,由斜率之積是列式整理即可得到點的軌跡方程,設,根據雙曲線的定義,從而求出的最小值;【詳解】解:設點坐標為,則直線的斜率;直線的斜率由已知有,化簡得點的軌跡方程為又,所以點的軌跡方程為,即點的軌跡為以、為頂點的雙曲線的左支(除點),因為,設,由雙曲線的定義可知,所以,當且僅當、、三點共線時取得最小值,因為,所以,所以,即的最小值為;故選:A2、A【解析】根據兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當時,,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A3、A【解析】由拋物線方程求出準線方程,由題意可得,由拋物線的定義可得,即可求解.【詳解】由可得,準線為,設,由拋物線的定義可得,因為過點作于,可得,所以,故選:A.4、B【解析】利用韋達定理結合等差中項的性質可求得的值,再結合等差中項的性質可求得結果.【詳解】對于方程,,由韋達定理可得,故,則,所以,.故選:B.5、C【解析】設內層橢圓的方程為,可得外層橢圓的方程為,設切線的方程為,聯立方程組,根據,得到,同理得到,結合題意求得,進而求得離心率.【詳解】設內層橢圓方程為,因為內外層的橢圓的離心率相同,可設外層橢圓的方程為,設切線的方程為,聯立方程組,整理得,由,整理得,設切線的方程為,同理可得,因為兩切線斜率之積等于,可得,可得,所以離心率為.故選:C.6、A【解析】根據圓的幾何性質轉化為圓心與點的距離加上半徑即可得解.【詳解】圓的圓心為,半徑為,所以,圓上點在線段上時,,故選:A7、A【解析】根據命題與它的否定命題一真一假,寫出該命題的否定命題,再求實數的取值范圍【詳解】解:命題“,”是假命題,則它的否定命題“,”是真命題,時,不等式為,顯然成立;時,應滿足,解得,所以實數的取值范圍是故選:A8、C【解析】根據等比數列求和公式求出首項即可得解.【詳解】由題可得該女子每天織布的尺數成等比數列,設其首項為,公比為,則,解得所以第二天織布的尺數為.故選:C9、B【解析】此點取自該圓內接正六邊形的概率是正六邊形面積除以圓的面積,分別求出即可.【詳解】如圖,在單位圓中作其內接正六邊形,該正六邊形是六個邊長等于半徑的正三角形,其面積,圓的面積為則所求概率.故選:B【點睛】此題考查幾何概率模型求解,關鍵在于準確求出正六邊形的面積和圓的面積.10、B【解析】求出點到直線的距離的取值范圍,對點是否為直角頂點進行分類討論,確定、的等量關系,綜合可得出結論.【詳解】設點,則點到直線的距離為.因為橢圓與直線均關于原點對稱,①若為直角頂點,則.當時,此時,不可能是等腰直角三角形;當時,此時,滿足是等腰直角三角形的直角頂點有兩個;當時,此時,滿足是等腰直角三角形的直角頂點有四個;②若不是直角頂點,則.當時,滿足是等腰直角三角形的非直角頂點不存在;當時,滿足是等腰直角三角形的非直角頂點有兩個;當時,滿足是等腰直角三角形非直角頂點有四個.綜上所述,當時,滿足是等腰直角三角形的點有八個;當時,滿足是等腰直角三角形的點有六個;當時,滿足是等腰直角三角形的點有四個;當時,滿足是等腰直角三角形的點有兩個;當時,滿足是等腰直角三角形的點不存在.故選:B.11、B【解析】利用古典概型的概率求解.【詳解】解:點從點出發,每次向右或向下跳一個單位長度,跳3次,則樣本空間{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},記“3次跳動后,恰好是沿著饕餮紋的路線到達點B”為事件,則{(下,下,右)},由古典概型的概率公式可知故選:B12、D【解析】求出拋物線C的準線l的方程,過A作l的垂線段,結合幾何意義及拋物線定義即可得解.【詳解】拋物線的準線l:,顯然點A在拋物線C內,過A作AM⊥l于M,交拋物線C于P,如圖,在拋物線C上任取不同于點P的點,過作于點N,連PF,AN,,由拋物線定義知,,于是得,即點P是過A作準線l的垂線與拋物線C的交點時,取最小值,所以的最小值為3.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、②③【解析】由對立和互斥事件的定義判斷①③;由獨立事件的性質判斷②④.【詳解】{紅},則E與F不是互斥事件;且,則F與G是對立事件;,則E與F是獨立事件;,,則F與G不是獨立事件故答案為:②③14、1560【解析】先把6名技術人員分成4組,每組至少一人,有兩種情況:(1)4個組的人數按3,1,1,1分配,(2)4個組的人數為2,2,1,1,求出所有的分組方法,然后再把4個組的人分給4個分廠,從而可求得答案【詳解】先把6名技術人員分成4組,每組至少一人.(1)若4個組的人數按3,1,1,1分配,則不同的分配方案有(種).(2)若4個組的人數為2,2,1,1,則不同的分配方案有(種).故所有分組方法共有20+45=65(種).再把4個組的人分給4個分廠,不同的方法有(種).故答案為:156015、【解析】根據題意可得,利用推出,進而得出結果.【詳解】由題意知,,將代入方程中,得,因為,所以,整理,得,又,所以,由,解得.故答案為:16、1【解析】先求導,由,代入即得解【詳解】由題意,故答案為:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)當點與點關于軸對稱時,的面積達到最大,理由見解析.【解析】(1)設,可得出,,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設直線的方程為,設點、,將直線的方程與橢圓的方程聯立,列出韋達定理,由已知可得,結合韋達定理可求得的值,即可得出直線的方程;(3)設與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯立,由判別式為零可求得,分析可知當點為直線與橢圓的切點時,的面積達到最大,求出直線與橢圓的切點坐標,可得出結論.【小問1詳解】解:因為,設,則,,所以,橢圓的方程可表示為,將點的坐標代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設線段的中點為,因為,則軸,故直線、的傾斜角互補,易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設點、,則,,,不合乎題意.所以,直線的斜率存在,設直線的方程為,設點、,聯立,可得,,由韋達定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設與直線平行且與橢圓相切的直線的方程為,聯立,可得(*),,解得,由題意可知,當點為直線與橢圓的切點時,此時的面積取最大值,當時,方程(*)為,解得,此時,即點.此時,點與點關于軸對稱,因此,當點與點關于軸對稱時,的面積達到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關結論來求最值;二是代數法,常將圓錐曲線的最值問題轉化為二次函數或三角函數的最值問題,然后利用基本不等式、函數的單調性或三角函數的有界性等求最值18、(1)(2)極大值為12,極小值-15【解析】(1)利用導數的幾何意義求解即可.(2)利用導數求解極值即可.【小問1詳解】,,切點為,故切線方程為,即;【小問2詳解】令,得或列表:-12+0-0+單調遞增12單調遞減-15單調遞增函數的極大值為,函數的極小值為.19、(1)(2)18【解析】(1)易得,,進而有,再結合已知即可求解;(2)由(1)易得直線AP的方程為,,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,聯立即可得與AP距離比較遠的切線方程,從而即可求解.【小問1詳解】解:由題意,將代入橢圓方程,得,又∵,∴,化簡得,解得,又,,所以,∴,∴橢圓的方程為;【小問2詳解】解:由(1)知,直線AP的方程為,即,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,化簡可得,由,即,解得,所以與AP距離比較遠的切線方程,因為與之間的距離,又,所以的面積的最大值為20、(1);(2)【解析】(1)由離心率得到,由橢圓的短軸端點與雙曲線的焦點重合,得到,進而可求出結果;(2)先由題意,得直線的斜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房地產新員工入職培訓總結
- 2025-2030中國葡萄果醬行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國藥物發酵罐行業市場發展趨勢與前景展望戰略研究報告
- 2025-2030中國花園耕耘機行業市場發展趨勢與前景展望戰略研究報告
- 期貨交易委托合同
- 2025-2030中國船用加熱設備行業市場發展趨勢與前景展望戰略研究報告
- 11《我是一張紙》(教案)部編版道德與法治二年級下冊
- 軟件購買協議
- 基站鐵塔基礎施工承包協議
- 2025-2030中國肘部剛度處理行業市場發展趨勢與前景展望戰略研究報告
- 物理學通俗演義
- 讀書分享讀書交流會《人生》課件
- 《童年》讀書分享PPT
- 神經外科類醫用耗材省際聯盟
- 高中英語-The Wild Within教學設計學情分析教材分析課后反思
- 超全QC管理流程圖
- 特殊物料儲存管理規定
- 房屋結構安全隱患自查排查記錄表
- 集成電路先進封裝材料PPT全套教學課件
- 砂石水泥購銷合同樣本(三篇)
- 歷屆 最近十年 (新知杯)上海市初中數學競賽試卷及答案(含模擬試題及解答)
評論
0/150
提交評論