2023-2024學年廣東高明一中高二數學第一學期期末達標檢測模擬試題含解析_第1頁
2023-2024學年廣東高明一中高二數學第一學期期末達標檢測模擬試題含解析_第2頁
2023-2024學年廣東高明一中高二數學第一學期期末達標檢測模擬試題含解析_第3頁
2023-2024學年廣東高明一中高二數學第一學期期末達標檢測模擬試題含解析_第4頁
2023-2024學年廣東高明一中高二數學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年廣東高明一中高二數學第一學期期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知a,b為正數,,則下列不等式一定成立的是()A. B.C. D.2.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.3.已知命題,,若是一個充分不必要條件,則的取值范圍是()A. B.C. D.4.已知角的頂點與坐標原點重合,始邊與x軸的非負半軸重合,角終邊上有一點(1,2),為銳角,且,則()A.-18 B.-6C. D.5.已知向量,則()A. B.C. D.6.若實數滿足,則點不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限7.拋物線的準線方程是A.x=1 B.x=-1C. D.8.已知,,,,則()A. B.C. D.9.在空間直角坐標系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.10.下列關于函數及其圖象的說法正確的是()A.B.最小正周期為C.函數圖象的對稱中心為點D.函數圖象的對稱軸方程為11.從集合{2,3,4,5}中隨機抽取一個數m,從集合{1,3,5}中隨機抽取一個數n,則向量=(m,n)與向量=(1,-1)垂直的概率為()A. B.C. D.12.若直線:與:互相平行,則a的值是()A. B.2C.或2 D.3或二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為F,O為坐標原點,M的準線為l且與x軸相交于點B,A為M上的一點,直線AO與直線l相交于C點,若,,則M的標準方程為______________.14.如圖,已知與所在平面垂直,且,,,點P、Q分別在線段BD、CD上,沿直線PQ將向上翻折,使D與A重合.則直線AP與平面ACQ所成角的正弦值為______15.已知點P是橢圓上的一點,點,則的最小值為____________.16.已知命題:方程表示焦點在軸上的橢圓;命題:方程表示雙曲線.若為真,則實數的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知二次函數,.(1)若,求函數的最小值;(2)若,解關于x的不等式.18.(12分)如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.(I)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.19.(12分)已知圓M過C(1,﹣1),D(﹣1,1)兩點,且圓心M在x+y﹣2=0上.(1)求圓M的方程;(2)設P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.20.(12分)自2021年秋季起,江西省普通高中起始年級全面實施新課程改革,為了迎接新高考,某校舉行物理和化學等選科考試,其中600名學生化學成績(滿分100分)的頻率分布直方圖如圖所示,其中成績分組區間是:第一組,第二組,第三組,第四組,第五組.已知圖中前三個組的頻率依次構成等差數列,第一組和第五組的頻率相同(1)求a,b的值;(2)估算高分(大于等于80分)人數;(3)估計這600名學生化學成績的平均值(同一組中的數據用該組區間的中點值作代表)和中位數(中位數精確到0.1)21.(12分)已知圓C的圓心在x軸上,且經過點,.(1)求圓C的標準方程;(2)過斜率為的直線與圓C相交于M,N,兩點,求弦MN的長.22.(10分)已知O為坐標原點,雙曲線C:(,)的離心率為,點P在雙曲線C上,點,分別為雙曲線C的左右焦點,.(1)求雙曲線C的標準方程;(2)已知點,,設直線PA,PB的斜率分別為,.證明:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】構造新函數,以函數單調性把不等式轉化為整式不等式即可解決.【詳解】不等式可化為:令,則則函數為單調增函數.由可得故選:A2、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.3、A【解析】先化簡命題p,q,再根據是的一個充分不必要條件,由q求解.【詳解】因為命題,或,又是的一個充分不必要條件,所以,解得,所以的取值范圍是,故選:A4、A【解析】由終邊上的點可得,由同角三角函數的平方、商數關系有,再應用差角、倍角正切公式即可求.【詳解】由題設,,,則,又,,所以.故選:A5、B【解析】根據向量加減法運算的坐標表示即可得到結果【詳解】故選:B.6、B【解析】作出給定的不等式組表示的平面區域,觀察圖形即可得解.【詳解】因實數滿足,作出不等式組表示的平面區域,如圖中陰影部分,觀察圖形知,陰影區域不過第二象限,即點不可能落在第二象限.故選:B7、C【解析】先把拋物線方程整理成標準方程,進而求得p,再根據拋物線性質得出準線方程【詳解】解:整理拋物線方程得,∴p=∵拋物線方程開口向上,∴準線方程是y=﹣故答案為C【點睛】本題主要考查拋物線的標準方程和簡單性質.屬基礎題8、D【解析】根據對數函數的性質和冪函數的單調性可得正確的選項.【詳解】因為,故,故,又,在上的增函數,故,故,故選:D.9、A【解析】根據給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A10、D【解析】化簡,利用正弦型函數的性質,依次判斷,即可【詳解】∵∴,A選項錯誤;的最小正周期為,B選項錯誤;令,則,故函數圖象的對稱中心為點,C選項錯誤;令,則,所以函數圖象的對稱軸方程為,D選項正確故選:D11、A【解析】根據分步計數乘法原理求得所有的)共有12個,滿足兩個向量垂直的共有2個,利用古典概型公式可得結果.【詳解】集合{2,3,4,5}中隨機抽取一個數,有4種方法;從集合{1,3,5}中隨機抽取一個數,有3種方法,所以,所有的共有個,由向量與向量垂直,可得,即,故滿足向量與向量垂直的共有2個:,所以向量與向量垂直的概率為,故選A.【點睛】本題主要考查分步計數乘法原理的應用、向量垂直的性質以及古典概型概率公式的應用,屬于中檔題.在解古典概型概率題時,首先求出樣本空間中基本事件的總數,其次求出概率事件中含有多少個基本事件,然后根據公式求得概率.12、A【解析】根據直線:與:互相平行,由求解.【詳解】因為直線:與:互相平行,所以,即,解得或,當時,直線:,:,互相平行;當時,直線:,:,重合;所以,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用相似關系計算,求得直線OA的方程,再聯立方程求得,利用拋物線定義根據即得p值,即得結果.【詳解】因為,,所以,則,如圖,,故,解得,所以,直線OA的斜率為,OA的方程,聯立直線OA與拋物線方程,解得,所以,故,則拋物線標準方程為.故答案為:.14、##【解析】取的中點,的中點,以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,設,根據求出,再由空間向量的數量積即可求解.【詳解】取的中點,的中點,如圖以所在直線為軸,以所在直線為軸,以所在直線為軸,建立空間直角坐標系,不妨設,則,,,由,即,解得,所以,故,設為平面ACQ的一個法向量,因為,,由,即,所以,設直線AP與平面ACQ所成角為,則.故答案為:15、【解析】設,表示出,消去y,利用二次函數求最值即可.【詳解】設,則.所以當x=1時,最小.故答案為:.16、【解析】既然為真,那么就是為真,即p是假,并且q是真,根據橢圓和雙曲線的定義即可解出。【詳解】∵為真,∴p為假,q為真;考慮p為真的情況:解得……①;由于p為假,∴或;由于q為真,∴,即……②;由①和②得:;故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)當時,不等式的解集為當時,不等式的解集為當時,不等式的解集為【解析】(1)帶入,將化解為,再利用基本不等式求最值即可;(2)將不等式移項整理為,再對a分類討論,比較兩根的大小,即可求得解集.【小問1詳解】當a=3時,函數可整理為,因為,所以利用基本不等式,當且僅當,即時,y取到最小值.所以,當時,函數的最小值為.【小問2詳解】將不等式整理為,令,即,解得兩根為與1,因為,當時,即時,此時的解集為;當時,即時,此時的解集為;當時,即時,此時的解集為.綜上所述,當時,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為.18、(Ⅰ)見解析;(Ⅱ).【解析】本題考查線面平行、線線平行、向量法等基礎知識,考查空間想象能力、分析問題的能力、計算能力.第一問,利用線面平行的定理,先證明線線平行,再證明線面平行;第二問,可以先找到線面角,再在三角形中解出正弦值,還可以用向量法建立直角坐標系解出正弦值.試題解析:(Ⅰ)在梯形ABCD中,AB與CD不平行.延長AB,DC,相交于點M(M∈平面PAB),點M即為所求的一個點.理由如下:由已知,BC∥ED,且BC=ED.所以四邊形BCDE是平行四邊形.從而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(說明:延長AP至點N,使得AP=PN,則所找的點可以是直線MN上任意一點)(Ⅱ)方法一:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.從而CD⊥PD.所以PDA是二面角P-CD-A的平面角.所以PDA=45°.設BC=1,則在Rt△PAD中,PA=AD=2.過點A作AH⊥CE,交CE的延長線于點H,連接PH.易知PA⊥平面ABCD,從而PA⊥CE.于是CE⊥平面PAH.所以平面PCE⊥平面PAH.過A作AQ⊥PH于Q,則AQ⊥平面PCE.所以APH是PA與平面PCE所成的角.在Rt△AEH中,AEH=45°,AE=1,所以AH=.在Rt△PAH中,PH==,所以sinAPH==.方法二:由已知,CD⊥PA,CD⊥AD,PAAD=A,所以CD⊥平面PAD.于是CD⊥PD.從而PDA是二面角P-CD-A的平面角.所以PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.設BC=1,則在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A為原點,以,的方向分別為x軸,z軸的正方向,建立如圖所示的空間直角坐標系A-xyz,則A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以=(1,0,-2),=(1,1,0),=(0,0,2)設平面PCE的法向量為n=(x,y,z),由得設x=2,解得n=(2,-2,1).設直線PA與平面PCE所成角為α,則sinα==.所以直線PA與平面PCE所成角的正弦值為.考點:線線平行、線面平行、向量法.19、(1);(2).【解析】(1)設圓的方程為:,由已知列出方程組,解之可得圓的方程;(2)由已知得四邊形的面積為,即有,又有.因此要求的最小值,只需求的最小值即可,根據點到直線的距離公式可求得答案.【詳解】解:(1)設圓方程為:,根據題意得,故所求圓M的方程為:;(2)如圖,四邊形的面積為,即又,所以,而,即.因此要求的最小值,只需求的最小值即可,的最小值即為點到直線的距離所以,四邊形面積的最小值為.20、(1)(2)90(3)平均值69.5;中位數69.4【解析】(1)由各矩形面積和為1列式即可;(2)由高分頻率乘以600即可;(3)由平均數與中位數的估算方法列式即可.【小問1詳解】由題意可知:解得小問2詳解】高分的頻率約為:故高分人數為:【小問3詳解】平均值為,設中位數為x,則故中位數為69.421、(1)(2)【解析】(1)由圓的性質可得圓心在線段的垂直平分線上,由題意求出的垂直平分線方程,從而得出圓心坐標,再求出半徑,得到答案.(2)由題意先求出滿足條件的直線方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論