




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
75kw-4極變頻調速同步電動機電磁方案及控制系統的設計75kw-4極變頻調速同步電動機電磁方案及控制系統的設計目錄摘要 IAbstract II第一章同步電機概論 11.1同步電機的基本特點 11.2同步電機的基本類型 11.3同步電機的基本結構 21.4同步電機主要用途 41.5基本技術要求 4第二章同步電動機的工作特性 72.1同步電動機的工作原理 72.2凸極同步電動機工作特性及分析 82.3同步電動機的功率平衡關系 10第三章電機設計基本方法 113.1總體設計過程 113.2電磁設計 11第四章電磁設計方案計算 144.1設計要求 144.2方案計算 14第五章電磁設計結果分析 405.1復算程序 405.2方案結果比較與分析 405.3心得與總結 42第六章同步電動機變頻調速系統設計 436.1同步調速系統類型 436.2變頻調速系統的基本控制類型 436.3同步電動機矢量控制系統 44第七章AutoCAD2004繪圖 497.1AutoCAD簡介 497.2畫定子沖片圖 497.3畫轉子沖片圖 507.4畫繞組圖 51參考文獻 54總結 55致謝 561.1同步電機的基本特點1.2同步電機的基本類型1.3同步電機的基本結構1.4同步電機主要用途1.5基本技術要求2.1同步電動機的工作原理2.2凸極同步電動機工作特性及分析b)2.3同步電動機的功率平衡關系3.1總體設計過程3.2電磁設計4.1設計要求4.2方案計算方案一方案二方案三一、額定數據和技術要求1.額定功率7575752.相數3333.額定線電壓4004004004.額定相電壓230.94230.94230.945.額定頻率5050506.極數4447.額定效率0.9150.9150.9158.額定功率因數0.9500.9500.9509.額定相電流125.22125.22125.2210.額定轉速15001500150011.額定轉矩477.45477.45477.4512.機座中心高(cm)25252513.定子槽滿率80~85%80.1%14.定子繞組電密7~9.5A/mm28.2115.氣隙磁密0.73~0.88T0.85二、定子沖片設計16.定子外徑43434317.定子內徑30303018.定子槽數48484819.電樞拼片條件(1)每圈扇形片數666(2)重疊數222(3)每片槽數888(4)扇形片高8.518.518.51(5)扇形片寬21.521.521.5(6)無軸流拼片條件66620.每極每相槽數44421.極距23.5523.5523.5522.定子槽形(1)0.320.320.32(2)(3)(4)5(5)5(6)R0.510.510.5123.每槽有效面積為絕緣層厚度,E級取=0.027cm,為槽楔厚,取為0.2cm,=2r1.381.381.38(1)直徑位置303030槽節距1.9631.9631.963槽寬0.320.320.32齒寬1.6431.6431.643(2)直徑位置30.530.530.5槽節距1.9951.9951.995槽寬齒寬1.0951.0951.095(3)直徑位置333333槽節距2.1592.1592.159槽寬1.021.021.02齒寬1.1391.1391.13925.定子齒距1.9631.9631.96325.平均齒寬=1/3×[bz2,bz3中之大者+2(bz2,bz3之最小者)]1.1101.1101.11027.電樞卡氏系數其中:槽節距1.0731.0731.073三、轉子沖片設計28.氣隙長度=229.最大氣隙0.1450.1450.14530.轉子外徑29.7629.7629.7631.磁軛外徑17171732.轉子(磁軛)內徑88833.磁極寬度999磁極尺寸計算(1)(2)2.5692.5692.569(3)3.8113.8113.811(4)1.7791.7791.779(5)16.01816.01816.018(6)31.97331.97331.973(7)(8)33.06233.06233.062(9)6.0846.0846.084(10)23.37823.37823.378(11)8.3518.3518.35135.磁極壓板厚36.磁極壓板寬37.氣隙極距比值0.0050.0050.00538.氣隙比值1.2081.2081.20839.極抱百分值0.7250.7250.72540.磁極抱角32.62532.62532.62541.等效極弧系數(查曲線1及2)[用公式計算見附錄一]0.6440.6440.64442.波形系數(查曲線1及2)[或用基波幅值系數,用公式計算見附錄一]1.1281.1281.12843.磁極偏心距偏心半徑:=14.6340.2460.2460.246四、電樞繞組和鐵心長度計算44.繞組并聯支路數22245.估算每槽導體所占面積1.1041.1041.10446.選擇每槽導體數注意:選偶數10111047.電樞繞組節距單層匝數=101110雙層匝數=55548.每相串聯導體數(q=2,3,4或5)80848049.線負荷319.032334.983319.03250.估算每根導體的截面積0.0870.0790.08751.每根導線并繞根數n33352.電樞線規裸徑/絕緣徑/0.9380.9520.938截面積0.02540.02540.025453.電樞繞組電密821.654821.654821.65454.每槽導線所占面積1.1061.1791.10655.槽滿率0.8010.850.80156.繞組系數Kdp0.9250.9280.92557.定子斜槽因數(一般,可不計算)11185008500880058.每極磁通27666612625935276666159.電機鐵芯長度21.46220.3720.7360.電樞鐵心長21.46220.3720.7361.磁極鐵心長22.46221.3721.7362.磁極鐵心凈長21.33820.30120.64363.鐵心有效長21.46220.3720.7364.鐵心純長20.38819.35119.69365.電樞繞組尺寸(1)(y以槽數計)22.84722.84722.84718.69318.69318.69314.53914.53914.539(2)14.45114.45114.45111.82311.82311.8239.1969.1969.196(3)5.5795.5795.5794.5654.5654.5653.5513.5513.551(4)26.22826.22826.22821.45921.45921.45916.69116.69116.691(5)bc取1.5cm24.46223.3723.7366.每相電樞繞組長3769.0553880.1173710.52467.電樞繞組每相電阻(歐)(1)在75℃時(歐)0.0540.0550.053(2)在20℃時(歐)0.0440.0460.04468.電樞繞組銅重(千克)15.33715.78915.09869.電樞繞組銅毛重(千克)16.10316.57815.853五、磁路計算70.氣隙磁密85008500880071.氣隙安匝875.481875.481906.3872.電樞齒磁密15800-1660015823.06815823.06816381.5373.電樞齒磁場強度,根據查表674.電樞齒計算高度1.571.571.5775.電樞齒安匝數51.96751.96777.49576.電樞軛高度4.494.494.4977.電樞軛計算高度4.664.664.6678.電樞軛磁密1456014560150741.0871.0871.08779.電樞軛磁路長(拼片定子)16.87816.87816.87880.電樞軛磁通分布系數根據查表40.3530.3530.32981.電樞軛磁場強度根據查表1161620.8782.電樞軛安匝數95.32495.324115.88583.電樞齒軛及氣隙安匝和1022.7721022.7721099.76084.極掌漏磁常數45.95644.32844.86585.極身漏磁常數為壓板厚47.64845.91446.48686.磁極漏磁常數102.96599.267100.48687.每極漏磁通105309.329101527.33110510.7888.磁極磁通28719702727463287717289.漏磁系數P246時1.041.041.041.0490.磁極極身截面=0.95(1m/m鋼片)198.606189.272 192.35091.磁極極身磁密14000~1560014460.65014410.24914957.97592.磁極極身磁場強度,根據查表217.28517.0520.0693.磁極極身安匝88.15486.956102.30794.磁軛高度95.轉子磁軛路長4.9064.9064.90696.轉子磁軛長度22.46221.3721.7397.轉子磁軛磁密14206.87414181.24514711.81498.轉子磁軛磁場強度,根據查表322.322.1626.2999.轉子磁軛安匝數109.409108.723128.985100.殘隙長度0.00870.00870.0087101.殘隙處截面202.154192.329195.569102.殘隙磁密14206.87414181.24514711.814103.殘隙安匝數99.43498.841102.681104.每極空載的磁安匝數1319.7691317.2911433.733六、參數計算105.電樞槽單位漏比磁導從曲線3查出[的計算公式見附錄二]1.1581.1581.158106.槽面積1.6081.6081.608107.1.0931.0931.093108.0.8070.8070.807109.互感漏磁導0.7610.7610.761110..電樞槽漏磁比磁導1.2581.3621.258111..電樞繞組等效節距0.8330.8410.833112.電樞繞組端接漏磁比磁導1.8862.0211.953113.曲折比漏磁導1.1051.1121.105114.相帶漏磁比磁導(1)q=整數(,無阻尼籠)根據y從曲線5查出,或用公式計算見附錄三(2)q=分數0.04960.04990.0496115.每相電阻標幺值0.0290.0300.029116.每相定子漏抗0.1460.1610.143117.每相漏磁電抗標么值0.0790.0870.078118.空載額定電壓時的氣隙與殘隙磁勢和974.914974.322 1009.061119.每相電樞反應磁勢3127.3873294.9853127.387120.直軸電構反應常數查曲線40.820.820.82121.橫軸電樞反應常數查曲線40.470.470.47122.直軸電樞反應磁勢2564.4572701.8882564.457123.橫軸電樞反應磁勢1469.8721548.6431469.872124.直軸電樞反應電抗標么值2.6302.7732.541 125.橫軸電樞反應電抗標么值1.5081.5891.457126.直軸同步電抗標么值2.7092.8612.619127.橫軸同步電抗標么值1.5871.6771.534七、短路比128.電樞電抗壓降磁勢77.05485.18978.227129.短路磁勢2641.5112787.0772642.684130.飽和短路比0.50.4730.543131.不飽和短路比0.3690.350.382132.額定電壓時感應電勢標么值1.0521.0561.0510.0660.0740.0651.0541.0581.053133.對應于的空載磁勢將及各部磁密,均乘以C倍,并計算,求得各部分的H及F,得對應于的空載磁勢(1)2917142.52779106.82914431.2(2)8962.3248995.8079270.017923.099926.548954.791(3)16683.70216746.03117256.485根據查表159.862.283.193.88697.654130.467(4)15351.75115409.10315878.805根據查表124.425.1734.6411.811424.807583.962(5)1428.7961449.0081669.219(6)147115.47143838.49167733.63(7)30642582922945.33082164.8(8)15428.83815443.05916023.703根據查表229.329.4840.5149.431150.349206.551(9)15158.07115197.64215760根據查表330.53137.78149.641152.094185.358(10)15158.07115197.64215760.004106.091105.925109.9962017.3542043.1142388.238134.滿載勵磁磁勢-2690.89-2844.91-2712.362959.0113031.1173348.4393999.5834157.0634309.172八、勵磁繞組135.勵磁繞組線規(1)圓線(2)扁線(安)51020線規1.300.02540.02540.0254136.勵磁繞組電密初值p246450~500;500~600(隱極)470498472137.滿載勵磁電流初值11.93812.64911.989138.勵磁繞組每極匝數取接近的整數336330360139.滿載勵磁電流11.90412.59711.970140.勵磁繞組電密468.643495.951471.257141.空載時的勵磁電流3.1423.1933.186142.空載額定電壓時的勵磁電流3.9283.9923.983143.短路額定電流時的勵磁電流7.8628.4467.341144.勵磁繞組排列先按比例作圖,確定層數及各層匝數(1)繞組高度圓線:=沿高度方向導體數扁線:=沒度度方向導體數4.2344.3664.032(2)繞組厚度圓線:=沿高度方向導體數扁線:=沒度度方向導體數3.0722.8353.456(3)幾何中心距(其中,)1.5361.4181.728145.勵磁繞組平均匝長74.36771.44074.110=0.223.06221.97022.330=0.250.350.350.35146.勵磁繞組電阻(1)時8.5398.0569.117(2)時7.0366.6387.513(3)時9.7779.22510.439147.勵磁繞組銅凈重(千克)22.59521.31824.125148.勵磁繞組銅毛重(千克)23.83122.38325.331149.額定勵磁電壓122.831122.643131.835九、短路電流,過載能力及暫態電抗150.空載時穩定短路電流倍數0.3690.3500.382151.額定負載時穩定短路電流倍數1.5141.4921.631152.額定負載時勵磁磁勢與氣隙,殘陽磁勢和的比值4.1024.2674.270153.0.4340.4650.166154.考慮磁路飲和時過載能力修正系數KK對應于 查曲線61.081.081.02155.過載能力標么值1.7211.6961.751156.勵磁繞組漏磁導0.6550.6630.661157.勵磁繞組漏抗標么值0.1910.2020.185158.勵磁繞組總電抗標么值2.8212.9752.727159.瞬變直軸電抗標幺值0.2570.2760.250160.瞬變橫軸電抗標幺值1.5871.6771.534十、額定負載時的損耗及效率161.沖擊短路電流倍數標幺值7.3566.8487.559162.額定負載時的電樞磁密16683.70216746.03117256.485163.電樞齒單位鐵耗(瓦/千克)對硅鋼片(瓦/千克)5.8455.8896.254164.電樞齒鐵重千克12.70612.06012.273165.電樞齒部鐵耗(瓦)當<100千伏安取當千伏安取148.545142.045153.502166.額定負載時電樞軛部磁密15351.75115409.10315878.805167.電樞軛部單位鐵耗(瓦/千克)4.9494.9865.295168.電樞軛部鐵重千克其中89.21784.67986.175169.電樞軛部鐵耗(瓦)當<100千伏安取當千伏安取662.327633.344684.429170.電樞槽口氣隙比值2.6672.6672.667171.磁極表面磁密脈動系數,對應于查曲線172.磁極表面氣隙磁密脈動幅值1923.1231930.3071989.147173.磁極單位表面鐵耗(瓦/厘米)用1mm鋼片時,取槽節距0.000550.000550.00059174.磁極極掌表面鐵耗0.8440.8090.874175.總鐵耗811.717776.198838.806176.電樞繞組銅耗2524.5032598.8922485.229177.勵磁損耗1217.0631286.0101313.489178.轉子圓周速度(米/秒)23.5523.5523.55179.機械損耗710.044692.575698.384180.附加損耗以千伏安為單位375375375181.總損耗5.6385.7295.711182.效率93%92.9%92.92%十一、主要材料重量183.銅線總重37.93137.10639.223184.硅鋼片重118.472112.446114.433185.磁極鋼片重50.23047.78948.5945.1復算程序5.2方案結果比較與分析單位(cm、kg)方案一方案二方案三每槽導體數101110氣隙磁密850085008800勵磁繞組電密468.643495.951471.257電樞鐵心長21.46220.3720.73電樞繞組銅重15.33715.78915.098電樞齒鐵重12.70612.06012.273電樞軛部鐵重89.21784.67986.175勵磁繞組銅凈重22.59521.31824.125銅線總重37.93137.10639.223硅鋼片重118.472112.446114.433磁極鋼片重50.23047.78948.594單位:(w/kg)方案一方案二方案三氣隙磁密850085008800每槽導體數101110電樞齒部鐵耗148.545142.045153.502電樞軛部鐵耗662.327633.344684.429磁極極掌表面鐵耗0.8440.8090.874總鐵耗811.717776.198838.806電樞繞組銅耗2524.5032598.8922485.229勵磁損耗1217.0631286.0101313.489附加損耗375375375機械損耗710.044692.575698.384總損耗(kw)5.6385.7295.711效率93%92.9%92.92%15823.06815823.06816381.531456014560150748500850088001923.1231930.3071989.147319.032334.983319.032468.643495.951471.2575.3心得與總結6.1同步調速系統類型6.2變頻調速系統的基本控制類型6.3同步電動機矢量控制系統7.1AutoCAD簡介7.2畫定子沖片圖7.3畫轉子沖片圖7.4畫繞組圖陳世坤電機設計[M]北京:機械工業出版社2000李發海朱東起電機學[M]北京:科學出版社2001韓俊良風力發電設備的技術特點及發展前景[J]大連起重集團有限公司設計一院2004孫國偉程小華變速恒頻雙饋風力發電系統及其發展趨勢[J]華南理工大學電力學院2004.中小電機行業發展趨勢[J]中國電器工業協會行業發展部2003.1吳旭升孫俊忠未來電機的發展與展望[J]船電技術2003.2辜成林陳喬夫熊永前電機學[M]華中科技大學出版社2001李隆年王寶玲電機設計[M]清華大學出版社1992中小型電機設計手冊[M]機械工業出版社上海電器科學研究所電機設計資料匯編[M]南昌大學電氣自動化系電機教研室2004孟大偉孔祥春AutoCAD在電機設計中的應用[J]哈爾濱電工學院學報1991Vol.14,No3中小型三相異步電動機電磁設計手算程序[M]南昌大學電氣自動化系電機教研室.彭友元電機繞組手冊[M]遼寧科學技術出版社陳世坤編電機設計[M]機械工業出版社李發海等合編電機學[M]科學出版社辜承林陳橋夫熊永前電機學[M]華中科技大學出版社張躍峰等編AUTOCAD2004入門與提高[M]清華大學出版社徐剛最新國內外電機設計制造新工藝新技術與檢修及質量檢測技術標準應用手冊(上)[M]銀聲音像出版社張培星變頻器方案[M]北京北洋電子技術有限公司彭兵相變頻調速同步電動機設計[D]沈陽工業大學陳伯時電力拖動自動控制系統[M]機械工業出版社戴文進徐龍權電機學[M]清華大學出版社NANCHANGUNIVERSITY外文資料原文及譯文(2006—2010年)學院:信息工程學院系電氣與自動化工程系專業:電氣工程及其自動化班級:電機電器062班學號:6101106076姓名:閆永佳指導教師:黃劭剛起訖日期:2008.3.24~2008.6.08Dead-timeCompensationofSVPWMBasedonDSPTMS320F2812forPMSMSongXuelei*,WenXuhui,GuoXinhua,andZhaoFengInstituteofElectricalEngineering,ChineseAcademyofSciences,Beijing,P.R.ChinaE-mail:songxl@Abstract—Thedead-timeeffectinathree-phasevoltagesourceinvertercanresultinvoltagelosses,currentwaveformdistortionandtorquepulsation.Inordertoimprovethecurrentwaveformanddecreasethetorquepulsation,thispaperproposesadead-timecompensationmethodofSVPWM.Thismethoddividestheiα-iβplaneintosixsectorsandcompensatesthedead-timeofSVPWMaccordingtothesectornumberofstatorcurrentvectordeterminedbytheα-andβ-axiscomponentsofthestatorcurrentvectorinthetwo-phasestaticreferenceframe.Inaddition,thismethodcanbeimplementedentirelythroughsoftwarewithoutanyextrahardware.FinallyexperimentsbasedonDSPTMS320F2812areestablishedandmade,andtheexperimentresultsindicatethattheproposedmethodiscorrectandfeasible.IndexTerms--dead-timecompensation,SVPWM,PMSM,TMS320F2812I.INTRODUCTIONBecausethepermanentmagnetsynchronousmachine(PMSM)hasalotofadvantagessuchashighpowerdensity,highefficiency,hightorquetoinertiaratio,highreliability,etal[1],therefore,thePMSMdrivingsystemhavebeenwidelyusedinmanyapplicationfields,especiallyinhybridelectricvehicles(HEV)inrecentyears[2]-[6].InthePMSMdrivingsystem,thethree-phasevoltagesourceinverterisusuallyadoptedandtheIGBTandMOSFETarealsousedbecauseoftheirfastswitchingfrequency.Forthethree-phasevoltagesourceinverter,inordertoavoidtheshortcircuitofthedclinkoccurringwhenthetwoswitchdevicesofthesamephaseareturnedonsimultaneously,thedead-timeisusuallyinsertedinthegatedrivingswitchsignals.Duringthedurationofthedead-time,bothofthetwoswitchdeviceofthesamephaseareturnedoff.Theexistingofthedead-timewillleadtoaseriesofdead-timeeffectproblemssuchasvoltagelosses,currentwaveformdistortionandtorquepulsation,especiallyundertheconditionofsmallcurrentorlowspeed.SVPWM(SpaceVectorPulseWidthModulation)isapopularmodulationmethodforthree-phasevoltagesourceinverterinmotordrivingsystem.Inordertoimprovethecurrentwaveformofmotorsanddecreasethetorquepulsationofmotors,severaldead-timecompensationmethodsofSVPWMhavebeenresearchedandusedinthemotordrivingsystem[7]-[11].Mostofthecompensationmethodsarebasedonthetheoryofaveragevoltagedeviation.Inthispaper,anoveldead-timecompensationmethodofSVPWM,whichisalsobasedonthetheoryofaveragevoltagedeviation,isproposed.Thismethoddividestheiα-iβplaneintosixsectorsandcompensatesthedeadtimeofSVPWMaccordingtothestatorcurrentvectorangleφdeterminedbytheα-andβ-axiscomponentsofthestatorcurrentvectorintheα-βreferenceframe.Inaddition,thismethodcanbeimplementedentirelythroughsoftwarewithoutanyextrahardwaredesign.FinallyexperimentsaremadeonthePMSMdrivingplatformbasedonDSPTMS320F2812totestandverifytheproposedcompensationmethod.II.DEAD-TIMECOMPENSATIONMETHODFig.1showsthetopologydiagramofthePMSMdrivingsystemwhoseinvertunitadoptsthethree-phasevoltagesourceinverter.InFig.1,Q1,Q2,Q3,Q4,Q5andQ6aresixIGBTsofthethree-phasevoltagesourceinverter,andD1,D2,D3,D4,D5andD6aretheirreverseparalleldiodesrespectively.Inaddition,thedrivingswitchsignalsg1,g2,g3,g4,g5andg6areprovidedbythecontrolunitofthedrivingsystem.Definethephasecurrentsia,ibandicarepositivewhentheyflowfromtheinvertertoPMSM,andnegativewhentheyflowfromPMSMtotheinverter.ThereareeightswitchcombinationstatesforthesixIGBTsinthethreephasevoltagesourceinverter,andduringthedurationofdead-time,therearecorrespondinglysixcurrentcombinationstatesforthree-phasecurrentsia,ibandicaccordingtotheirpolarity:(1)ia>0,ib<0andic<0;(2)ia>0,ib>0andic<0;(3)ia<0,ib>0andic<0;(4)ia<0,ib>0andic>0;(5)ia<0,ib<0andic>0;(6)ia>0,ib<0andic>0.Itisveryimportantanddifficulttodetectthezerocrosspointorthepolarityofeachphasecurrent.Traditionally,ifthezero-crosspointisdetectdirectlythroughA/DconverterofDSPorMCU,biggermeasurementdeviationwillbeledespeciallyundertheconditionofsmallcurrent,whichwillresultinbiggerdead-timecompensationdeviationandalsoaffecttheresultofdead-timecompensation.Therefore,thispaperadoptsanindirectlymethodtodetectthezero-crosspointofphasecurrent,whichisbasedonthecurrentvectorangleφinthetwo-phasestaticreferenceframe.Forconvenientanalysisandillustration,placethethree-phasecurrentsia,ib,icinthethree-phasestaticreferenceframeandthetwocurrentcomponentsiα,iβofthecurrentvectorinthetwo-phasestaticreferenceframeintothesamefigure,whichisshowninFig.2.Accordingtothepolarityofthree-phasecurrentsia,ib,ic,theiα-iβplaneinthetwo-phasestaticreferenceframecanbedividedintosixsectors:I(1),II(2),III(3),IV(4),V(5)andVI(6).Foreachsectorintheiα-iβplane,thereisacorrespondingdead-timecompensationrule.Inotherwords,oncethesectorwhichthecurrentvectorbelongstoisknown,thedead-timeeffectcanbecompensatedaccordingtothecorrespondingcompensationrule.Therefore,recognizingthesectornumberofthecurrentvectoristhekeyproblem.Inthispaper,thesectornumberisdeterminedbythecurrentvectorangleφwhichcanbecalculatedthroughtheα-andβ-axiscomponentsofthestatorcurrentvector.Equation(1)showsthecalculationmethodofthecurrentvectorφ,andequation(2)showstherelationshipbetweenthesectornumberandthecurrentvectorφ.φ=kπ+arctan(iβ/iα)(k=0,1)Fig.2.CurrentPolarityandCurrentVectorAngle?TABLEIDEAD-TIMECOMPENSATIONRULESTABLEOFSVPWM(2)Forthree-phasevoltagesourceinverter,theessenceofdead-timecompensationistocompensatingthevoltagedeviation.However,inthedigitalmotordrivingandcontrolsystem,voltageregulationisimplementedthroughpulsewidthmodulation,thatis,throughregulatingthedutycycleofvoltagepulsewhichhassomethingtodowiththepulsewidthTinonePWMperiodTpwm.Therefore,infactitisthepulsewidthTthatiscompensatedinthepracticalapplication.TABLEIshowsthedead-timecompensationrulescorrespondingwiththepolarityofthree-phasecurrentsia,ib,icandthesectornumberofthecurrentvectorintheiα-iβplane.Itcanbeseenthatfordifferentsectorsoftheiα-iβplane,thecompensationvaluesarecorrespondinglydifferent.Inoneword,theproposeddead-timecompensationmethodcanbecarriedoutthroughthefollowingsteps:(1)Calculatethecurrentvectorangleφthroughtheα-andβ-axiscomponentsofthestatorcurrentvectorinthetwo-phasestaticreferenceframeaccordingtoequation(1).(2)Determinethesectornumberthroughthecurrentvectorangleφaccordingtoequation(2).(3)Executethedead-timecompensationalgorithmaccordingtothecompensationrulestableTABLEI.III.EXPERIMENTSInordertotestandverifytheproposeddead-timecompensationmethodofSVPWM,experimentsareestablishedandmade.TheexperimentsystemconsistsofPMSM,three-phasevoltagesourceinverter,controlplatform,dynamometer,heatdissipationsystem,etal.ThetypeofIGBTintheinverterisCM600DY-24AproducedbyMitsubishi.ThecontrolplatformisbasedonDSPTMS320F2812producedbyTexasInstrument.ItisaspecialmotorcontrolDSPwhichhasmanyadvantagesandcanimplementhigh-performancemotorcontrolsuchasFOC(FieldOrientedControl)andDTC(DirectTorqueControl).ThemainparametersofthecontrolobjectPMSMusedinexperimentsarelistedinTABLEII.Fordifferentpulsewidthcompensationvaluesof0.76μs,1.10μs,1.33μsand1.60μs,thedead-timecompensationexperimentsareallmade.Fig.3showstheexperimentwaveformsofthree-phasestatorcurrentsandthesectornumberofstatorcurrentvectorfordifferentpulsewidthcompensationvalues,andFig.4showsthecorrespondingfrequencyspectrums.TABLEIIMAINPARAMETERSOFPMSMUSEDINEXPERIMENTS(a)NoCompensation(b)PulseWidthCompensationValue=0.76μs(c)PulseWidthCompensationValue=1.10μs(d)PulseWidthCompensationValue=1.33μs(e)PulseWidthCompensationValue=1.60μsFig.3.ExperimentWaveformsofThree-phaseStatorCurrentsHere,theCPUfrequencyofDSPissetat150MHz,theswitchingfrequencyofIGBTsinthree-phasevoltageinverterissetat10kHz,thedead-timeissetat3.2μsthroughthehardwareandsoftwareofDSP,themotorcontrolmethodadoptsFOCalgorithm,thedclinkvoltageissetatabout330V,andthephasecurrentiscontrolledatabout10A.(a)NoCompensation(b)PulseWidthCompensationValue=0.76μs(c)PulseWidthCompensationValue=1.10μs(d)PulseWidthCompensationValue=1.33μs(e)PulseWidthCompensationValue=1.60μsFig.4.FrequencySpectrumofStatorCurrent(PhaseA)ItcanbeseenfromFig.3andFig.4that,comparedwithexperimentresultsofnocompensation,throughtheproposeddead-timecompensationalgorithmthethreephasestatorcurrentwaveformsofPMSMareallimprovedeffectivelyandtheharmoniccomponentsofthree-phasestatorcurrentsarealsodecreasedeffectively.Especiallywhenthepulsewidthcompensationvalueissetatabout1.10μs,comparedwithexperimentresultsattheotherpulsewidthcompensationvaluesof0.76μ,1.33μsand1.60μs,thecompensationresultisthebestandtheharmoniccomponentsofthree-phasestatorcurrentsaretheleast.Therefore,theproposeddead-timecompensationmethodiscorrectandfeasible.IV.CONCLUSIONSTheproposeddead-timecompensationmethodcanbeimplementedeasilythroughsoftwarealgorithmwithoutanyextrahardwaredesign.Solongasthecurrentvectorangleφisdeterminedbytheα-andβ-axiscomponentsofstatorcurrentvectorinthetwo-phasestaticreferenceframe,thedead-timecompensationalgorithmcanbecarriedouteffectivelyaccordingtothecorrespondingdead-timecompensationrulestable.FinallyexperimentsareestablishedandmadeonthePMSMdrivingplatformbasedonDSPTMS320F2812andtheresultsindicatethattheproposedmethodcanimprovethecurrentdistortionanddecreasethetorquepulsationeffectively,especiallywhenthepulsewidthcompensationvalueisequaltoabout1.10μs.Therefore,theproposedmethodiscorrectandfeasible.REFERENCES[1]SongChi,ZhengZhang,LongyaXu,“ARobust,EfficiencyOptimizedFlux-WeakeningControlAlgorithmforPMSynchronousMachines”,Proceedingsofthe2007IEEEIndustryApplicationsConference,pp.1308-1314,2007.[2]ZhangQianfan,LiuXiaofei,“PermanentMagneticSynchronousMotorandDrivesAppliedonaMid-sizeHybridElectricCar”,Proceedingsofthe2008IEEEVehiclePowerandPropulsionConference,pp.1-5,2008.[3]Y.Dai,L.Song,S.Cui,“DevelopmentofPMSMDrivesforHybridElectricCarApplications”,IEEETransactionsonMagnetics,Vol.43,No.1,pp.434-437,2007.[4]RahmanM.A.,“IPMMotorDrivesforHybridElectricVehicles”,Proceedingsofthe2007InternationalAegeanconferenceonElectricalMachinesandPowerElectronics,pp.109-115,2007.[5]RahmanM.A.,“HighEfficiencyIPMMotorDrivesforHybridElectricVehicles”,Proceedingsofthe2007CanadianConferenceonElectricalandComputerEngineering,pp.252-255,2007.[6]FuZ.X.,“Real-timePredictionofTorqueAvailabilityofanIPMSynchronousMachineDriveforHybridElectricVehicles”,Proceedingsofthe2005IEEEInternationalConferenceonElectricMachinesandDrives,pp.199-206,2005.[7]WangGao-lin,YuYong,YangRong-feng,XuDian-guo,“Dead-timeCompensationofSpaceVectorPWMInverterforInductionMotor”,ProceedingsoftheCSEE,Vol.28,No.15,pp.79-83,2008.[8]ZeyunChao,ZhixinXu,LiliKong,“ResearchofDeadtimeCompensationinSVPWMModulator”,ProceedingsofICEMS2008,pp.1973-1975,2008.[9]ZhouL.Q.,“Dead-timeCompensationMethodofSVPWMBasedonDSP”,Proceedingsofthe4thIEEEConferenceonIndustrialElectronicsandApplications,pp.2355-2358,2009.[10]QingboHu,HaibingHu,ZhengyuLu,WenxiYao,“ANovelMethodforDead-timeCompensationBasedonSVPWM”,ProceedingsofAPEC2005,Vol.3,pp.1867-1870,2005.[11]N.Urasaki,T.Senjyu,K.Uezato,T.Funabashi,“AnAdaptiveDead-timeCompensationStrategyforVoltageSourceInverterFedMotorDrives”,IEEETransactionsonPowerElectronics,vol.20,No.5,pp.1150-1160,2005.外文資料譯文基于TMS320F2812DSP的有死區時間補償的SVPWM調速永磁同步電動機宋雪蕾*溫徐匯,郭新華和趙峰北京電機工程學會,中國科學院,E-mail:songxl@引言死區補償方法本文,該扇形的數目取決于電流矢量角φ,它可以通過計算α-和β-軸定子組件的電流矢量來得到。方程(1)顯示當前向量φ的計算方法,和方程(2)顯示了扇形和電流矢量φ之間的數量關系。φ=kπ+arctan(iβ/iα)(k=0,1)三.實驗參數單位數值相數-3極對數-5額定功率KW52額定轉速Rpm2500額定轉矩Nm200永久磁Wb0.104感應系數(d/q)mH0.33/0.50定子繞組的電阻Ω0.024圖3。實驗波形三相定子電流在這里,DSP的CPU的頻率為150MHz,IGBT的開關的三相電壓型逆變器頻率為10kHz,通過硬件和DSP軟件死區時間定為3.2μs,FOC電機控制方法采用的算法,鏈接的直流電壓設置為約330V,和相電流控制
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江省義烏市2024-2025學年物理高二下期末經典模擬試題含解析
- 重慶市江津區高2024-2025學年高二物理第二學期期末統考模擬試題含解析
- 新疆博爾塔拉蒙古自治州第五師中學2024-2025學年高二下數學期末質量檢測模擬試題含解析
- 浙江省杭十四中2025年生物高二第二學期期末教學質量檢測試題含解析
- 重慶市萬州龍駒中學2024-2025學年數學高二第二學期期末質量檢測模擬試題含解析
- 班主任學生德育與行為規范合同
- 成都房產交易風險防范合同
- 進步之星評選方案范文(18篇)
- 護理年終考試復習試題(一)
- 2025社團迎新活動策劃方案(7篇)
- DB32/T 4220-2022消防設施物聯網系統技術規范
- 車位轉讓合同協議書
- 合伙經營貨車輛協議書
- 2025年農村個人果園承包合同
- 湖北省武漢市2025屆高三年級五月模擬訓練試題數學試題及答案(武漢五調)
- 企業管理流程數字化轉型計劃
- 2025年數控技術專業畢業考試試題及答案
- MOOC 地下鐵道-中南大學 中國大學慕課答案
- 六西格瑪DMAIC案例(ppt-85頁)課件
- T∕CAGHP 070-2019 地質災害群測群防監測規范(試行)
- 年產50000噸檸檬酸發酵車間設計
評論
0/150
提交評論