




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省仙居縣2023屆初三3月周日測試(1)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在射線AB上順次取兩點C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點A沿逆時針方向旋轉,旋轉角記為α(其中0°<α<45°),旋轉后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點G,H.若CG=x,EH=y,則下列函數圖象中,能反映y與x之間關系的是()A. B. C. D.2.如圖,在矩形ABCD中,連接BD,點O是BD的中點,若點M在AD邊上,連接MO并延長交BC邊于點M’,連接MB,DM’則圖中的全等三角形共有()A.3對 B.4對 C.5對 D.6對3.已知二次函數的與的不符對應值如下表:且方程的兩根分別為,,下面說法錯誤的是().A., B.C.當時, D.當時,有最小值4.如圖,A、B、C、D四個點均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數為()A.40° B.45° C.50° D.55°5.如圖,線段AB是直線y=4x+2的一部分,點A是直線與y軸的交點,點B的縱坐標為6,曲線BC是雙曲線y=的一部分,點C的橫坐標為6,由點C開始不斷重復“A﹣B﹣C”的過程,形成一組波浪線.點P(2017,m)與Q(2020,n)均在該波浪線上,分別過P、Q兩點向x軸作垂線段,垂足為點D和E,則四邊形PDEQ的面積是()A.10 B. C. D.156.化簡÷的結果是()A. B. C. D.2(x+1)7.關于x的一元二次方程x2﹣2x+k+2=0有實數根,則k的取值范圍在數軸上表示正確的是()A. B.C. D.8.如圖,AB是⊙O的直徑,點C、D是圓上兩點,且∠AOC=126°,則∠CDB=()A.54° B.64° C.27° D.37°9.如圖中任意畫一個點,落在黑色區域的概率是()A. B. C.π D.5010.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數為()A.30° B.40° C.50° D.60°二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的一元二次方程有兩個不相等的實數根,則k的取值范圍是▲.12.如圖,點A的坐標是(2,0),△ABO是等邊三角形,點B在第一象限,若反比例函數的圖象經過點B,則k的值是_____.13.如圖,在矩形ABCD中,AD=5,AB=4,E是BC上的一點,BE=3,DF⊥AE,垂足為F,則tan∠FDC=_____.14.如圖,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分線MN交AC于點D,則∠A的度數是.15.如圖,四邊形ABCD內接于⊙O,AB是⊙O的直徑,過點C作⊙O的切線交AB的延長線于點P,若∠P=40°,則∠ADC=____°.16.函數中,自變量x的取值范圍是.三、解答題(共8題,共72分)17.(8分)如圖1,將長為10的線段OA繞點O旋轉90°得到OB,點A的運動軌跡為,P是半徑OB上一動點,Q是上的一動點,連接PQ.(1)當∠POQ=時,PQ有最大值,最大值為;(2)如圖2,若P是OB中點,且QP⊥OB于點P,求的長;(3)如圖3,將扇形AOB沿折痕AP折疊,使點B的對應點B′恰好落在OA的延長線上,求陰影部分面積.18.(8分)如圖,在菱形ABCD中,E、F分別為AD和CD上的點,且AE=CF,連接AF、CE交于點G,求證:點G在BD上.19.(8分)閱讀材料:各類方程的解法求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于“去分母”可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想轉化,把未知轉化為已知.用“轉化”的數學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.問題:方程x3+x2-2x=0的解是x1=0,x2=,x3=;拓展:用“轉化”思想求方程的解;應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.20.(8分)某小學為了了解學生每天完成家庭作業所用時間的情況,從每班抽取相同數量的學生進行調查,并將所得數據進行整理,制成條形統計圖和扇形統計圖如下:補全條形統計圖;求扇形統計圖扇形D的圓心角的度數;若該中學有2000名學生,請估計其中有多少名學生能在1.5小時內完成家庭作業?21.(8分)如圖,⊙O是△ABC的外接圓,點O在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點D作BC的平行線與AC的延長線相交于點P.求證:PD是⊙O的切線;求證:△ABD∽△DCP;當AB=5cm,AC=12cm時,求線段PC的長.22.(10分)地下停車場的設計大大緩解了住宅小區停車難的問題,如圖是龍泉某小區的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據規定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小剛認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結果精確到0.1m,參考數據:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)23.(12分)某海域有A、B兩個港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船從A港口出發,沿東北方向行駛一段距離后,到達位于B港口南偏東75°方向的C處,求:(1)∠C=°;(2)此時刻船與B港口之間的距離CB的長(結果保留根號).24.如圖,已知△ABC中,AB=BC=5,tan∠ABC=.求邊AC的長;設邊BC的垂直平分線與邊AB的交點為D,求的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【點睛】本題主要考查了旋轉、相似等知識,解題的關鍵是根據已知得出△ACG∽△ADH.2、D【解析】
根據矩形的對邊平行且相等及其對稱性,即可寫出圖中的全等三角形的對數.【詳解】圖中圖中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB,△OBM≌△ODM’,△OBM’≌△ODM,△M’BM≌△MDM’,△DBM≌△BDM’,故選D.【點睛】此題主要考查矩形的性質及全等三角形的判定,解題的關鍵是熟知矩形的對稱性.3、C【解析】
分別結合圖表中數據得出二次函數對稱軸以及圖像與x軸交點范圍和自變量x與y的對應情況,進而得出答案.【詳解】A、利用圖表中x=0,1時對應y的值相等,x=﹣1,2時對應y的值相等,∴x=﹣2,5時對應y的值相等,∴x=﹣2,y=5,故此選項正確;B、方程ax2+bc+c=0的兩根分別是x1、x2(x1<x2),且x=1時y=﹣1;x=2時,y=1,∴1<x2<2,故此選項正確;C、由題意可得出二次函數圖像向上,∴當x1<x<x2時,y<0,故此選項錯誤;D、∵利用圖表中x=0,1時對應y的值相等,∴當x=時,y有最小值,故此選項正確,不合題意.所以選C.【點睛】此題主要考查了拋物線與x軸的交點以及利用圖像上點的坐標得出函數的性質,利用數形結合得出是解題關鍵.4、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點:1、平行線的性質;2、圓周角定理;3等腰三角形的性質5、C【解析】
A,C之間的距離為6,點Q與點P的水平距離為3,進而得到A,B之間的水平距離為1,且k=6,根據四邊形PDEQ的面積為,即可得到四邊形PDEQ的面積.【詳解】A,C之間的距離為6,2017÷6=336…1,故點P離x軸的距離與點B離x軸的距離相同,在y=4x+2中,當y=6時,x=1,即點P離x軸的距離為6,∴m=6,2020﹣2017=3,故點Q與點P的水平距離為3,∵解得k=6,雙曲線1+3=4,即點Q離x軸的距離為,∴∵四邊形PDEQ的面積是.故選:C.【點睛】考查了反比例函數的圖象與性質,平行四邊形的面積,綜合性比較強,難度較大.6、A【解析】
原式利用除法法則變形,約分即可得到結果.【詳解】原式=?(x﹣1)=.故選A.【點睛】本題考查了分式的乘除法,熟練掌握運算法則是解答本題的關鍵.7、C【解析】
由一元二次方程有實數根可知△≥0,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍.【詳解】∵關于x的一元二次方程x2?2x+k+2=0有實數根,∴△=(?2)2?4(k+2)?0,解得:k??1,在數軸上表示為:故選C.【點睛】本題考查了一元二次方程根的判別式.根據一元二次方程根的情況利用根的判別式列出不等式是解題的關鍵.8、C【解析】
由∠AOC=126°,可求得∠BOC的度數,然后由圓周角定理,求得∠CDB的度數.【詳解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°故選:C.【點睛】此題考查了圓周角定理.注意在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.9、B【解析】
抓住黑白面積相等,根據概率公式可求出概率.【詳解】因為,黑白區域面積相等,所以,點落在黑色區域的概率是.故選B【點睛】本題考核知識點:幾何概率.解題關鍵點:分清黑白區域面積關系.10、B【解析】試題解析:∵AB∥CD,且∴在中,故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、k<且k≠1.【解析】根據一元二次方程kx2-x+1=1有兩個不相等的實數根,知△=b2-4ac>1,然后據此列出關于k的方程,解方程,結合一元二次方程的定義即可求解:∵有兩個不相等的實數根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.12、.【解析】
已知△ABO是等邊三角形,通過作高BC,利用等邊三角形的性質可以求出OB和OC的長度;由于Rt△OBC中一條直角邊和一條斜邊的長度已知,根據勾股定理還可求出BC的長度,進而確定點B的坐標;將點B的坐標代入反比例函數的解析式中,即可求出k的值.【詳解】過點B作BC垂直OA于C,∵點A的坐標是(2,0),∴AO=2,∵△ABO是等邊三角形,∴OC=1,BC=,∴點B的坐標是把代入,得故答案為.【點睛】考查待定系數法確定反比例函數的解析式,只需求出反比例函數圖象上一點的坐標;13、4【解析】
首先根據矩形的性質以及垂線的性質得到∠FDC=∠ABE,進而得出tan∠FDC=tan∠AEB=ABBE【詳解】∵DF⊥AE,垂足為F,∴∠AFD=90°,∵∠ADF+∠DAF=90°,∠ADF+∠CDF=90°,∴∠DAF=∠CDF,∵∠DAF=∠AEB,∴∠FDC=∠ABE,∴tan∠FDC=tan∠AEB=ABBE,∵在矩形ABCD中,AB=4,E是BC上的一點,BE=3,∴tan∠FDC=43.故答案為【點睛】本題主要考查了銳角三角函數的關系以及矩形的性質,根據已知得出tan∠FDC=tan∠AEB是解題關鍵.14、50°.【解析】
根據線段垂直平分線上的點到兩端點的距離相等可得AD=BD,根據等邊對等角可得∠A=∠ABD,然后表示出∠ABC,再根據等腰三角形兩底角相等可得∠C=∠ABC,然后根據三角形的內角和定理列出方程求解即可:【詳解】∵MN是AB的垂直平分線,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案為50°.15、115°【解析】
根據過C點的切線與AB的延長線交于P點,∠P=40°,可以求得∠OCP和∠OBC的度數,又根據圓內接四邊形對角互補,可以求得∠D的度數,本題得以解決.【詳解】解:連接OC,如右圖所示,
由題意可得,∠OCP=90°,∠P=40°,
∴∠COB=50°,
∵OC=OB,
∴∠OCB=∠OBC=65°,
∵四邊形ABCD是圓內接四邊形,
∴∠D+∠ABC=180°,
∴∠D=115°,
故答案為:115°.【點睛】本題考查切線的性質、圓內接四邊形,解題的關鍵是明確題意,找出所求問題需要的條件.16、且.【解析】試題分析:求函數自變量的取值范圍,就是求函數解析式有意義的條件,根據二次根式被開方數必須是非負數和分式分母不為0的條件,要使在實數范圍內有意義,必須且.考點:1.函數自變量的取值范圍;2.二次根式和分式有意義的條件.三、解答題(共8題,共72分)17、(1);(2);(3)【解析】
(1)先判斷出當PQ取最大時,點Q與點A重合,點P與點B重合,即可得出結論;(2)先判斷出∠POQ=60°,最后用弧長用弧長公式即可得出結論;(3)先在Rt△B'OP中,OP2+=,解得OP=,最后用面積的和差即可得出結論.【詳解】解:(1)∵P是半徑OB上一動點,Q是上的一動點,∴當PQ取最大時,點Q與點A重合,點P與點B重合,此時,∠POQ=90°,PQ=,故答案為:90°,10;(2)解:如圖,連接OQ,∵點P是OB的中點,∴OP=OB=OQ.∵QP⊥OB,∴∠OPQ=90°在Rt△OPQ中,cos∠QOP=,∴∠QOP=60°,∴lBQ;(3)由折疊的性質可得,,在Rt△B'OP中,OP2+=,解得OP=,S陰影=S扇形AOB﹣2S△AOP=.【點睛】此題是圓的綜合題,主要考查了圓的性質,弧長公式,扇形的面積公式,熟記公式是解本題的關鍵.18、見解析【解析】
先連接AC,根據菱形性質證明△EAC≌△FCA,然后結合中垂線的性質即可證明點G在BD上.【詳解】證明:如圖,連接AC.∵四邊形ABCD是菱形,∴DA=DC,BD與AC互相垂直平分,∴∠EAC=∠FCA.∵AE=CF,AC=CA,∴△EAC≌△FCA,∴∠ECA=∠FAC,∴GA=GC,∴點G在AC的中垂線上,∴點G在BD上.【點睛】此題重點考察學生對菱形性質的理解,掌握菱形性質和三角形全等證明方法是解題的關鍵.19、(1)-2,1;(2)x=3;(3)4m.【解析】
(1)因式分解多項式,然后得結論;
(2)兩邊平方,把無理方程轉化為整式方程,求解,注意驗根;
(3)設AP的長為xm,根據勾股定理和BP+CP=10,可列出方程,由于方程含有根號,兩邊平方,把無理方程轉化為整式方程,求解,【詳解】解:(1),,所以或或,,;故答案為,1;(2),方程的兩邊平方,得即或,,當時,,所以不是原方程的解.所以方程的解是;(3)因為四邊形是矩形,所以,設,則因為,,兩邊平方,得整理,得兩邊平方并整理,得即所以.經檢驗,是方程的解.答:的長為.【點睛】考查了轉化的思想方法,一元二次方程的解法.解無理方程是注意到驗根.解決(3)時,根據勾股定理和繩長,列出方程是關鍵.20、(1)補圖見解析;(2)27°;(3)1800名【解析】
(1)根據A類的人數是10,所占的百分比是25%即可求得總人數,然后根據百分比的意義求得B類的人數;
(2)用360°乘以對應的比例即可求解;
(3)用總人數乘以對應的百分比即可求解.【詳解】(1)抽取的總人數是:10÷25%=40(人),在B類的人數是:40×30%=12(人).;(2)扇形統計圖扇形D的圓心角的度數是:360×=27°;(3)能在1.5小時內完成家庭作業的人數是:2000×(25%+30%+35%)=1800(人).考點:條形統計圖、扇形統計圖.21、(1)證明見解析;(2)證明見解析;(3)CP=16.9cm.【解析】【分析】(1)先判斷出∠BAC=2∠BAD,進而判斷出∠BOD=∠BAC=90°,得出PD⊥OD即可得出結論;(2)先判斷出∠ADB=∠P,再判斷出∠DCP=∠ABD,即可得出結論;(3)先求出BC,再判斷出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出結論.【詳解】(1)如圖,連接OD,∵BC是⊙O的直徑,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半徑,∴PD是⊙O的切線;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直徑,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.【點睛】本題考查了切線的判定、相似三角形的判定與性質等,熟練掌握切線的判定方法、相似三角形的判定與性質定理是解題的關鍵.22、小亮說的對,CE為2.6m.【解析】
先根據CE⊥AE,判斷出CE為高,再根據解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 開啟2025年特許金融分析師備考新篇試題及答案
- 2025年CFA考試證券投資分析試題及答案
- 銀行跨境交易管理政策研究與試題及答案
- 2025年國際金融理財師考試的職業發展重要性試題及答案
- 銀行資產配置策略試題及答案2025年討論
- 網絡編輯師備考必看試題及答案
- 應用分享2025年特許金融分析師考試試題及答案
- 小語種證書考試前的心理調節試題及答案
- 2024年網絡編輯師文章審核策略試題及答案
- 網絡編輯師基礎知識試題及答案
- 一年級信息技術下冊 在網上交流信息教學設計 清華版
- 廣東省2024-2025學年佛山市普通高中教學質量檢測政治試卷及答案(二)高三試卷(佛山二模)
- 11.1 杠桿 課件 2024-2025學年教科版物理八年級下學期
- 搶救工作制度課件
- LOGO更換普通夾板作業課件
- 2025年415全民國家安全教育日主題班會課件
- 美容師考試與法律法規相關知識及試題答案
- 山東省東營市東營區勝利第一初級中學2024-2025學年九年級下學期一模英語試卷(含答案無聽力原文及音頻)
- 臨床決策支持系統在路徑優化中的實踐案例
- 漢服實體店創業計劃書
- 2025-2030中國滑雪板行業深度調研及投資前景預測研究報告
評論
0/150
提交評論