




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
幾種常見的優化方法電子結構幾何機構函數穩定點最小點Taylor展開:V(x)=V(xk)+(x-xk)V’(xk)+1/2(x-xk)2V’’(xk)+…..當x是3N個變量的時候,V’(xk)成為3Nx1的向量,而V’’(xk)成為3Nx3N的矩陣,矩陣元如:Hessian1幾種常見的優化方法電子結構函數穩定點Taylor展開:當x一階梯度法a.SteepestdescendentSk=-gk/|gk|directiongradient知道了方向,如何確定步長呢?最常用的是先選擇任意步長l,然后在計算中調節用體系的能量作為外界衡量標準,能量升高了則逐步減小步長。robust,butslow最速下降法2一階梯度法Sk=-gk/|gk|directi最陡下降法(SD)
3最陡下降法(SD)3b.ConjugateGradient(CG)共軛梯度第k步的方向標量UsuallymoreefficientthanSD,alsorobust不需要外界能量等作為衡量量利用了上一步的信息4b.ConjugateGradient(CG)共軛2。二階梯度方法這類方法很多,最簡單的稱為Newton-Raphson方法,而最常用的是Quasi-Newton方法。Quasi-Newton方法:useanapproximationoftheinverseHessian.Formofapproximationdiffersamongmethods牛頓-拉夫遜法BFGSmethodBroyden-Fletcher-Golfarb-ShannoDFPmethodDavidon-Fletcher-Powell52。二階梯度方法這類方法很多,最簡單的稱為Newton-RaMoleculardynamics分子動力學HistoryItwasnotuntil1964thatMDwasusedtostudyarealisticmolecularsystem,inwhichtheatomsinteractedviaaLennard-Jonespotential.Afterthispoint,MDtechniquesdevelopedrapidlytoencompassdiatomicspecies,water(whichisstillthesubjectofcurrentresearchtoday!),smallrigidmolecules,flexiblehydrocarbonsandnowevenmacromoleculessuchasproteinsandDNA.Theseareallexamplesofcontinuousdynamicalsimulations,andthewayinwhichtheatomicmotioniscalculatedisquitedifferentfromthatinimpulsivesimulationscontaininghard-corerepulsions.6Moleculardynamics分子動力學HistWhatcanwedowithMD–CalculateequilibriumconfigurationalpropertiesinasimilarfashiontoMC.–Studytransportproperties(e.g.mean-squareddisplacementanddiffusioncoefficients).–MDintheNVT,NpTandNpHensembles–Theunitedatomapproximation–ConstraintdynamicsandSHAKE–Rigidbodydynamics–MultipletimestepalgorithmsExtendthebasicMDalgorithm7WhatcanwedowithMD–Calcul‘Impulsive’moleculardynamics
1.Dynamicsofperfectly‘hard’particlescanbesolvedexactly,butprocessbecomesinvolvedformanypart(N-bodyproblem).2.Canuseanumericalschemethatadvancesthesystemforwardintimeuntilacollisionoccurs. 3.Velocitiesofcollidingparticles(usuallyapair!)thenrecalculatedandsystemputintomotionagain.4.Simulationproceedsbyfitsandstarts,withameantimebetweencollisionsrelatedtotheaveragekineticenergyoftheparticles.5.Potentiallyveryefficientalgorithm,butcollisionsbetweenparticlesofcomplexshapearenoteasytosolve,andcannotbegeneralisedtocontinuouspotentials. 88Continuoustimemoleculardynamics1.Bycalculatingthederivativeofamacromolecularforcefield,wecanfindtheforcesoneachatomasafunctionofitsposition.2.Requireamethodofevolvingthepositionsoftheparticlesinspaceandtimetoproducea‘true’dynamicaltrajectory.3.StandardtechniqueistosolveNewton’sequationsofmotionnumerically,usingsomefinitedifferencescheme,whichisknownasintegration.4.ThismeansthatweadvancethesystembysomesmalltimestepΔt,recalculatetheforcesandvelocities,andthenrepeattheprocessiteratively.5.ProvidedΔtissmallenough,thisproducesanacceptableapproximatesolutiontothecontinuousequationsofmotion.9ContinuoustimemoleculardynaExampleofintegratorforMDsimulationOneofthemostpopularandwidelyusedintegratorsistheVerletleapfrogmethod:positionsandvelocitiesofparticlesaresuccessively‘leap-frogged’overeachotherusingaccelerationscalculatedfromforcefield.TheVerletschemehastheadvantageofhighprecision(oforderΔt4),whichmeansthatalongertimestepcanbeusedforagivenleveloffluctuations.Themethodalsoenjoysverylowdrift,providedanappropriatetimestepandforcecut-offareused.r(t+Dt)=r(t)+v(t+Dt/2)Dtv(t+Dt/2)=v(t-Dt/2)+a(t+Dt/2)Dt10ExampleofintegratorforMDsOtherintegratorsforMDsimulationsAlthoughtheVerletleapfrogmethodisnotparticularlyfast,thisisrelativelyunimportantbecausethetimerequiredforintegrationisusuallytrivialincomparisontothetimerequiredfortheforcecalculations.Themostimportantconcernforanintegratoristhatitexhibitslowdrift,i.e.thatthetotalenergyfluctuatesaboutsomeconstantvalue.Anecessary(butnotsufficient)conditionforthisisthatitissymplectic.Crudelyspeaking,thismeansthatitshouldbetimereversible(likeNewton’sequations),i.e.ifwereversethemomentaofallparticlesatagiveninstant,thesystemshouldtracebackalongitsprevioustrajectory.11OtherintegratorsforMDsimulOtherintegratorsforMDsimulationsTheVerletmethodissymplectic,butmethodssuchaspredictor-correctorschemesarenot.Non-symplecticmethodsgenerallyhaveproblemswithlongtermenergyconservation.Havingachievedlowdrift,wouldalsoliketheenergyfluctuationsforagiventimesteptobeaslowaspossible.Alwaysdesirabletousethelargesttimesteppossible.Ingeneral,thetrajectoriesproducedbyintegrationwilldivergeexponentiallyfromtheirtruecontinuouspathsduetotheLyapunovinstability.However,thisdoesnotconcernusgreatly,asthethermalsamplingisunaffected?expectationvaluesunchanged.12OtherintegratorsforMDsimulChoosingthecorrecttimestep…1.
Thechoiceoftimestepiscrucial:tooshortandphasespaceissampledinefficiently,toolongandtheenergywillfluctuatewildlyandthesimulationmaybecomecatastrophicallyunstable(“blowup”).2.Theinstabilitiesarecausedbythemotionofatomsbeingextrapolatedintoregionswherethepotentialenergyisprohibitivelyhigh(e.g.atomsoverlapping).3.Agoodruleofthumbisthatwhensimulatinganatomicfluid,thetimestepshouldbecomparabletothemeantimebetweencollisions(about5fsforArat298K).4.Forflexiblemolecules,thetimestepshouldbeanorderofmagnitudelessthantheperiodofthefastestmotion(usuallybondstretching:C—Haround10fssouse1fs).13ChoosingthecorrecttimestepForclassicMD,therecouldbemanytrickstospeedupcalculations,allcenteringaroundreducingtheeffortinvolvedinthecalculationoftheinteratomicforces,asthisisgenerallymuchmoretime-consumingthanintegration.ForexampleTruncatethelong-rangeforces:charge-charge,charge-dipoleLook-uptablesForfirstprinciplesMD,asforcesareevaluatedfromquantummechanics,weareonlyconcernedwiththetime-step.14ForclassicMD,therecouldbeBecausetheinteractionsarecompletelyelasticandpairwiseacting,bothenergyandmomentumareconserved.Therefore,MDnaturallysamplesfromthemicrocanonicalorNVEensemble.Asmentionedpreviously,theNVEensembleisnotveryusefulforstudyingrealsystems.Wewouldliketobeabletosimulatesystemsatconstanttemperatureorconstantpressure.ThesimplestMD,likeverletmethod,isadeterministicsimulationtechniqueforevolvingsystemstoequilibriumbysolvingNewton’slawsnumerically.15BecausetheinteractionsarecMDindifferentthermodynamicensemblesInthislecture,wewilldiscusswaysofusingMDtosamplefromdifferentthermodynamicensembles,whichareidentifiedbytheirconservedquantities.
Canonical(NVT)–Fixednumberofparticles,totalvolumeandtemperature.Requirestheparticlestointeractwithathermostat.
Isobaric-isothermal(NpT)–Fixednumberofparticles,pressureandtemperature.Requiresparticlestointeractwithathermostatandbarostat.
Isobaric-isenthalpic(NpH)–Fixednumberofparticles,pressureandenthalpy.Unusual,butrequiresparticlestointeractwithabarostatonly.16MDindifferentthermodynamicAdvancedapplicationsofMDWewillthenstudysomemoreadvancedMDmethodsthataredesignedspecificallytospeedup,ormakepossible,thesimulationoflargescalemacromolecularsystems.Allthesemethodsshareacommonprinciple:theyfreezeout,ordecouple,thehighfrequencydegreesoffreedom.Thisenablestheuseofalargertimestepwithoutnumericalinstability.Thesemethodsinclude:–Unitedatomapproximation–ConstraintdynamicsandSHAKE–Rigidbodydynamics–Multipletimestepalgorithms17AdvancedapplicationsofMD17RevisionofNVEMDLet’sstartbyrevisinghowtodoNVEMD.Recallthatwecalculatedtheforcesonallatomsfromthederivativeoftheforcefield,thenintegratedthee.o.m.usingafinitedifferenceschemewithsometimestepΔt.Wethenrecalculatedtheforcesontheatoms,andrepeatedtheprocesstogenerateadynamicaltrajectoryintheNVEensemble.Becausethemeankineticenergyisconstant,theaveragekinetictemperatureTKisalsoconstant.However,inthermalequilibrium,weknowthatinstantaneousTKwillfluctuate.IfwewanttosamplefromtheNVTensemble,weshouldkeepthestatisticaltemperatureconstant.18RevisionofNVEMD18ExtendedLagrangiansThereareessentiallytwowaystokeepthestatisticaltemperatureconstant,andthereforesamplefromthetrueNVTensemble.–Stochastically,usinghybridMC/MDmethods–Dynamically,viaanextendedLagrangianWewilldescribethelattermethodinthislectureAnextendedLagrangianissimplyawayofincludingadegreeoffreedomwhichrepresentsthereservoir,andthencarryingoutasimulationonthisextendedsystem.Energycanflowdynamicallybackandforthfromthereservoir,whichhasacertainthermal‘inertia’associatedwithit.AllwehavetodoisaddsometermstoNewton’sequationsofmotionforthesystem.19ExtendedLagrangians19ExtendedLagrangiansThestandardLagrangianLiswrittenasthedifferenceofthekineticandpotentialenergies:Newton’slawsthenfollowbysubstitutingthisintotheEuler-Lagrangeequation:Newton’sequationsandLagrangianformalismareequivalent,butthelatterusesgeneralisedcoordinates...20ExtendedLagrangians..20CanonicalMDSo,ourextendedLagrangianincludesanextracoordinateζ,whichisafrictionalcoefficientthatevolvesintimesoastominimisethedifferencebetweentheinstantaneouskineticandstatisticaltemperatures.Themodifiedequationsofmotionare:TheconservedquantityistheHelmholtzfreeenergy.(modifiedformofNewtonII)21CanonicalMD(modifiedformofCanonicalMDByadjustingthethermostatrelaxationtimetT
(usuallyintherange0.5to2ps)thesimulationwillreachanequilibriumstatewithconstantstatisticaltemperatureTS.TSisnowaparameterofoursystem,asopposedtothemeasuredinstantaneousvalueofTKwhichfluctuatesaccordingtotheamountofthermalenergyinthesystematanyparticulartime.ToohighavalueoftTandenergywillflowveryslowlybetweenthesystemandthereservoir(overdamped).ToolowavalueoftTandtemperaturewilloscillateaboutitsequilibriumvalue(underdamped).ThisistheNosé-Hooverthermostatmethod.22CanonicalMD22CanonicalMDTherearemanyothermethodsforachievingconstanttemperature,butnotallofthemsamplefromthetrueNVTensembleduetoalackofmicroscopicreversibility.Wecallthesepseudo-NVTmethods,andtheyinclude:–BerendsenmethodVelocitiesarerescaleddeterministicallyaftereachstepsothatthesystemisforcedtowardsthedesiredtemperature–GaussianconstraintsMakesthekineticenergyaconstantofthemotionbyminimisingtheleastsquaresdifferencebetweentheNewtonianandconstrainedtrajectoriesThesemethodsareoftenfaster,butonlyconvergeonthetruecanonicalaveragepropertiesasO(1/N).23CanonicalMD23Isothermal-isobaricMDWecanapplytheextendedLagrangianapproachtosimulationsatconstantpressurebysimplyaddingyetanothercoordinatetooursystem.Weuseη,whichisafrictionalcoefficientthatevolvesintimetominimisethedifferencebetweentheinstantaneouspressurep(t),measuredbyavirialexpression,andthepressureofanexternalreservoirpext.TheequationsofmotionforthesystemcanthenbeobtainedbysubstitutingthemodifiedLagrangianintotheEuler-Lagrangeequations.Thesenowincludetworelaxationtimes:oneforthethermostattT,andoneforthebarostattp.24Isothermal-isobaricMD24Isothermal-isobaricMDTheisknownastheNosé-Hoovermethod(Melchionnatype)andtheequationsofmotionare:25Isothermal-isobaricMD25Isothermal-isobaricMD26Isothermal-isobaricMD26Constraintdynamicsfreezethebondstretchingmotionsofthehydrogens(oranyotherbond,inprinciple).Weapplyasetofholonomicconstraintstothesystem,whichar
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 社會責任與圖書館發展試題及答案
- 光學測評面試題及答案
- 護理教育與醫療實踐結合探討試題及答案
- 系統性思考網絡規劃設計師試題及答案
- 母豬營養需求評估試題及答案
- 清朝領導考試題目及答案
- 性別差異在心理咨詢中的根源試題及答案
- 系統規劃與管理師考試時應注意的事項試題及答案
- 網絡規劃設計師考試網絡管理技能訓練試題及答案
- 心理咨詢師考試中的有效溝通與反饋試題及答案
- 【湛江】2025年中國熱帶農業科學院農產品加工研究所第一批招聘工作人員30人(第1號)筆試歷年典型考題及考點剖析附帶答案詳解
- 成人重癥患者人工氣道濕化護理專家共識 解讀
- 檢驗人員任命書
- 第十一課喜鵲筑巢課件
- 新人教版數學五年級下冊《約分》課件
- 幼兒園教學課件閃閃的紅星
- 內蒙古自治區醫療衛生機構藥品集中采購購銷合同
- 閉合導線計算表(帶公式)
- 中國移動網絡運行維護規程(2014版)
- 歐洲法國意大利簽證行程單
- 高老鼠和矮老鼠PPT
評論
0/150
提交評論